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Supervisor’s Foreword

Mr. Levi’s Ph.D. thesis concerns modelling photoinduced molecular dynamics in
solution and establishing their link to ultrafast experiments. Considering that such
experiments deliver information about the solution and the solvent in course of
time, it is crucial to be able to reproduce the data by modelling it. This is key to
understanding the reaction under study and come up with a rationale. The thesis
tackles the case of a diplatinum complex in solution, which is a model system for
photocatalysis. The thesis contains both experimental ultrafast X-ray scattering
results obtained at LCLS in California as well as substantial computer simulations.
For the latter purpose, Mr. Levi developed a multiscale protocol involving direct
Born-Oppenheimer Molecular Dynamics using a QM/MM framework with the
DSCF approach in the QM part. The computer simulation results were translated
into X-ray scattering signals to provide direct contact with the experimental results.
The thesis investigates the coherent vibrational dynamics in the ground and excited
singlet states, providing deep insight into the energy flow within the molecule. The
thesis work will inspire many researchers in the area of photoinduced solution
dynamics, and the methods development will be useful for the theoretical chemistry
community in general.

Kongens Lyngby, Denmark
May 2019

Prof. Klaus Braagaard Møller
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Abstract

Recent advancements in X-ray source technologies have opened up the possibility
for directly observing photoinduced chemical reactions as they unfold on the
femtosecond time scale. An increasing number of time-resolved X-ray scattering
experiments are being directed towards uncovering the light-induced ultrafast
dynamics of photocatalytic metal complexes in solution. In this scenario, theory and
modelling are brought into play to offer assistance to the interpretation and analysis
of intricate measured data. Besides, theoretical modelling is the key to the funda-
mental understanding of the atomistic mechanisms behind reaction dynamics in
solution.

The work presented in this thesis deals with extending, benchmarking and
applying a novel multiscale atomistic modelling strategy for simulating the struc-
tural dynamics of complex molecular systems. The method is based on the direct
Born-Oppenheimer Molecular Dynamics (BOMD) propagation of the nuclei and
treats solvent effects within a quantum mechanics/molecular mechanics (QM/MM)
framework.

The first part of the thesis shows how the QM/MM scheme is augmented to
include electronic excited states with arbitrary spin multiplicity using a DSCF
approach. We describe the testing and implementation of the method in the
GPAW DFT code, providing all prerequisite theoretical background. The robust-
ness of the implementation and the computational expediency of GPAW allow fast
configurational sampling, overcoming the problem of statistical accuracy in
excited-state BOMD simulations of systems as large as transition metal complexes.

The second part is dedicated to an investigation of the structure and dynamics of
a model photocatalyst, the diplatinum(II) complex [Pt2(P2O5H2)4]

4−, abbreviated
PtPOP. In doing that we make extensive use of the computational tools presented in
the first part. First, we show how DSCF for the first time provides computational
evidence that the lowest-lying singlet and triplet excited states have parallel
potential energy surfaces (PESs) along the Pt–Pt coordinate. Then we highlight the
synergy between time-resolved experiments and simulations in unravelling the
photoinduced ultrafast dynamics of the complex in water. QM/MM BOMD sim-
ulations are used to guide the analysis of X-ray diffuse scattering (XDS) data

ix



measured at an X-ray free-electron laser (XFEL), and to elaborate a semi-classical
picture of ground-state hole dynamics that explains the experimental outcome.
Finally, we take a step forward in the understanding of the excited-state vibrational
relaxation in solution. We show, through the simulations, that PtPOP after exci-
tation does not retain the symmetry of the ground state, as so far believed, and that
excess Pt–Pt vibrational energy is first directed towards vibrational modes involving
the ligands, while the role of the solvent is to favour intramolecular vibrational
energy redistribution (IVR) in the complex.
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This thesis has been submitted to the Department of Chemistry, Technical
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Parts of this thesis have been published in the following journal articles:

The work presented in this thesis resulted in scientific contributions in terms
of theoretical and code development, and advancements in the understanding of the
PtPOP system. Below, we list the articles that were published based on the main
achievements of the thesis work.

Theoretical work:

• Contribution to the theoretical formulation of the GPAW electrostatic embed-
ding QM/MM scheme [1].

Computational development:

• Implementation of a DSCF scheme with Gaussian smeared constraints in the
GPAW DFT code (https://gitlab.com/glevi/gpaw/tree/Dscf_gauss) [2].

• Implementation of a classical counterion model with spherical harmonic
restraints within the TIP4P force field originally implemented by A. O. Dohn for
ASE (developed in-house) [1, 2].

• Improvements to the ASE modules for calculating Lennard-Jones interactions
and applying RATTLE constraints in MD simulations (https://gitlab.com/glevi).

Contributions to the understanding of the photophysics, dynamics and solution
properties of PtPOP:

• Theoretical and computational support to the first experimental determination
of the change in Pt–Pt equilibrium distance in the lowest-lying singlet excited
state in water by X-ray diffuse scattering measurements [3].

• First time computational proof of the similarities between the potential energy
surfaces in the lowest singlet and triplet excited states [2].

• QM/MM characterization of the solvation shell in water in the ground and first
singlet excited states [1, 2].

• First time computational evidence of ligand distortion and symmetry breaking in
the excited state [2].

• Elaboration of a semi-classical model to interpret the experimental observation
of ground-state dynamics, and time-resolved XDS determination of the Pt–Pt
vibrational period of the ground state [4].

• Computational identification of the paths for vibrational relaxation in the first
singlet excited state in water [2].
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K. S. Thygesen, K. W. Jacobsen, J. Ulstrup, N. E. Henriksen, K. B. Møller,
and H. Jónsson. Grid-Based Projector Augmented Wave (GPAW) imple-
mentation of Quantum Mechanics/Molecular Mechanics (QM/MM) electro-
static embedding and application to a solvated diplatinum complex. Journal of
Chemical Theory and Computation, 13(12):6010–6022, 2017.
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Part I
Introduction and Background



Chapter 1
Filming Motion at the Atomic Scale
of Time

Being able to observe the dynamics of the chemical bond in real time has been one of
the greatest achievements of modern physical chemistry over the last three decades.
Before then, the motion of atoms during bond-breaking/forming reactions had been
inaccessible to direct experimental observation. The reason lies in the ultrafast nature
of these atomistic processes. Indeed, nuclear vibrational motion unfolds on a very
short time scale, the femtosecond time scale (1 fs = 10−15 s). Femtochemistry [2,
3], the study of reaction intermediates at the atomic scale of time, started out with
the ultrafast experiments performed by A. H. Zewail in the late 1980s, for which he
was awarded the 1999 Nobel Prize in Chemistry [4]. The pioneering experiments
investigated the dissociation of diatomic [5] and triatomic [6, 7] molecules in gas
phase, and were made possible by the advent of ultrashort optical laser technologies.
Clocking of such ultrafast chemical processes is achieved according to the pump-
probe methodology. A femtosecond optical pulse is used to initiate the coherent
and synchronous motion of the atoms. This first pump pulse is followed, after a
time delay controlled with femtosecond resolution, by a second ultrashort pulse of
radiation, the probe pulse, which captures an individual snapshot of atomic motion.
Combining snapshots recorded in a sequence of pump-probe time delays produces a
“motion picture” of the dynamics. Since nuclear dynamics is an intrinsic reflection
of the reaction mechanisms, pump-probe technologies have paved the way to the
mechanistic understanding of an increasingly ample range of chemical reactions.

All early pump-probe investigations employed an optical UV-vis probe. However,
spectroscopic data do not correlate directly to structural changes. The structural infor-
mation can be inferred indirectly from optical measurements if detailed knowledge
of the electronic structure of the system is available. While this can be true in the
case of elementary reactions involving small diatomic and triatomicmolecules, as the
system grows in size, extensive electronic structure calculations are needed, which

Parts of this chapter have been reproduced with permission from Ref. [1], https://doi.org/10.1021/
acs.jpcc.8b00301. Copyright 2018 American Chemical Society.
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can be cumbersome at best. The complexity of the problem is particularly high when
dealing with molecular reactions in solution, since the degrees of freedom involved
are many and the dynamics is inherently dominated by time-dependent distributions
of atomic positions. On the other hand, X-rays can provide a more direct probe of
the photoinduced structural changes. This was understood soon after the first optical
pump-probe experiments [8]. The challenge to proceed further along this direction
has been represented by the design and implementation of coherent X-ray sources
capable of providing femtosecond time resolution and sufficiently high photon flux.
Nowadays, novel X-ray free-electron laser (XFEL) facilities [8–11] meet all the
requisites needed to image atomic motion in solution with X-rays.

1.1 Ultrafast Studies of Transition Metal Complexes

Photocatalytic reactions involving transition metal complexes in solution have been
among the most popular targets of time-resolved experiments over the last years [8,
12, 13]. Indeed, stability in solution, remarkable photophysical properties and the
presence of electron-rich atoms, make transition metal complexes attractive candi-
dates for both spectroscopic and X-ray ultrafast studies. Taking full advantage of
their photocatalytic properties requires an understanding of the structure-function
relationships and mechanisms behind ultrafast light-induced reactions in complex
environments. The continuous demand for more efficient photocatalitic systems
combined with tremendous advancements in pump-probe techniques has led to a
whole host of experiments able to follow the evolution of vibrational wave packets
or the solvation dynamics in photoexcited prototypical metal complexes in real time
[14–21].

These novel experiments cover grounds often dominated by complex interplays
between vibrational relaxation, solvent effects and electronic couplings, which are
not known a priori. Therefore, linking experimental observations to mechanistic
frameworks can only be accomplished with the help of solid theoretical and mod-
elling strategies. Moreover, even when the interpretation of an experiment is facili-
tated by prior photophysical knowledge or by employing simple phenomenological
models, a variety of complementary techniques are needed to assemble a complete
atomistic and energetic picture of the early stages of the investigated dynamics. In
this context, advanced computational methods capable of connecting multiple time-
resolved observables, while delivering new mechanistic insights into the underlying
physical processes, play an important role in complementing ultrafast experiments
of transition metal complexes.
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1.2 Modelling Strategies

One of the main challenges associated with ab initio computational determination of
the mechanisms of the ultrafast excited-state dynamics of complex molecular sys-
tems is represented by the time scales one is able to simulatewhile retaining accuracy.
As experimental techniques with atomistic resolution start putting a lens onto hith-
erto unexplored sub-picosecond intramolecular structural and solvation processes,
developing efficient computational methods capable of providing insights into the
underlying physical mechanisms becomes of utmost importance. Broadly speaking,
much of the efforts of the theoretical community to address this challenge have
been directed towards the development and application of two computational frame-
works of choice: methods that solve the time-dependent Schrödinger equation for the
nuclei using precomputed potential energy surfaces (PESs) [22–28], and methods
based on classical propagation of the nuclei with on-the-fly evaluation of energies
and forces at ab initio level [29–34]. Quantum dynamics approaches have proven
useful in deciphering some aspects of the excited-state decay pathways of photocat-
alytic metal complexes, particularly concerning non-adiabatic electronic transitions
[22, 25]. However, the outcome of this kind of simulation relies on the selection of
a small number of vibrational modes along which the dynamics is restricted. Fur-
thermore, solvent effects in quantum wave packet simulations are usually accounted
for in an implicit manner [24, 26], thus neglecting any explicit solvation dynamics
effect. On the other hand, the second approach, ab initio classical dynamics, allows,
in principle, to efficiently explore the full, unconstrained space of nuclear configu-
rations and to include explicit solvent effects in a multiscale fashion. The price to
pay for having abandoned a quantum description of the dynamics, is that quantum
effects, like non-adiabatic electronic transitions and tunnelling, are neglected in this
second picture. In particular, neglecting the non-adiabatic couplings between elec-
tronic and nuclear motions implies restricting the dynamics of the nuclei to a single,
Born-Oppenheimer (BO) PES (the concept of BOPESwill be introduced inChap.4).
Cases in which non-adiabatic effects are important on the time scales that are consid-
ered in the investigation, can be treated, without abandoning the full-dimensionality
provided by the classical trajectory description, with mixed quantum-classical meth-
ods like trajectory surface hopping (TSH) [35–37], or the closely related ab initio
multiple spawning (AIMS) [38–40]. The basic idea behind these approaches is that
the time evolution of a non-adiabatic system can be reproduced by ensembles of
trajectories that evolve on BO electronic surfaces and experience state switches in
proximity of regions of non-adiabaticity. Among them, TSH has been the one that
has been most extensively applied to study the mechanisms behind the first steps of
the ultrafast relaxation cascade of photoexcited metal complexes [41–44].

The work presented in this thesis focused principally on extending the features
and capabilities of, and applying a multiscale computational method [45–47] that
follows along the second modelling strategy. The approach is based on a density
functional theory (DFT) implementation of on-the-fly quantummechanics/molecular
mechanics (QM/MM) Born-Oppenheimer Molecular Dynamics (BOMD) [48]. The
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implementation is available within the Atomic Simulation Environment (ASE) [49,
50] and uses the computationally efficient Grid-based Projector Augmented Wave
(GPAW) code [51, 52] for the DFT part. In its basic form, it was already available
before the start of the present Ph.D. project, and had already been successfully ap-
plied to study the ultrafast internal vibrational dynamics and to obtain a picture of
solvent-driven electronic dynamics in bimetallic photoactive complexes [31, 53].
More specifically, the method is tailored to help the interpretation and analysis of
optical pump-X-ray probe experiments on transition metal complexes in solution.
The experiments are performed by the group where the Ph.D. project took place
together with experimental collaborators at XFELs facilities. As we will see in more
detail in the course of the thesis, X-ray scattering signals of solvated molecules are
much more challenging to analyse than conventional X-ray scattering patterns of
crystals. Put simply, the X-ray scattering of a solution appears diffuse (and for this
reason it is referred to as “X-ray diffuse scattering” (XDS)), lacking the character-
istic Bragg peaks of the scattering signal of periodic systems, which allow to infer
directly structural information. Our multiscale approach offers support to the charac-
terization of time-resolved XDS data by delivering statistically relevant and accurate
information on both thermal equilibrium properties and ultrafast out-of-equilibrium
dynamical processes. For example, the method has proven decisive in establishing
a robust interpretation of the solvation dynamics at the catalytic site of a diiridium
complex observed in ultrafast XDS data [17]. We have recently presented the full
details of the QM/MM BOMD implementation in ASE and GPAW in Ref. [48].

In all previous applications, the excited states of interest were described using the
spin unrestricted DFT formalism. In some of the investigated systems, the observed
ultrafast dynamics following photoexcitation was known to take place on an excited
state of the same spin multiplicity as the ground state, usually a singlet. This implied
that the simulations had to approximate the dynamics by propagating the system on
the lowest excited state of a different spin multiplicity by assuming parallel PESs
along the dominant vibrational motions. However, even in systems for which the
latter assumption was demonstrated to be valid, the dynamics in the two states can
still be different if their energies are such that they lie in regions of different density of
states, as recently shown byMonni et al. [15]. These authors compared the coherence
decay of vibrational wave packets in the first singlet and triplet excited states of
diplatinum complexes in solution observed in ultrafast optical measurements, and
found significant differences despite parallel PESs.

The need to be able to reliably compare simulations to experimental results calls
for an extension of the QM/MMBOMDmethod in ASE/GPAW to encompass states
of arbitrary spin multiplicity. With this perspective in mind, part of the work carried
out during the present Ph.D. project [1] has been devoted to extending the capabilities
of the code by coupling it to a single-determinantDFTdescription of the excited states
based on the �-self-consistent-field (�SCF) approach [54], which carries no extra
computational cost with respect to ground-state DFT.

�SCF is gaining increasing popularity in the study of the excited states of both
organic chromophores [55–58] and transition metal complexes [59, 60]. This re-
newed interest is motivated in part by the growing demand for computationally
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cheap strategies for simulating with sufficient accuracy the excited-state structure
and dynamics of large systems, for which high-level multireference methods are not
yet a viable choice. The reliability of �SCF as applied to study the structure and
dynamics of small molecules, organic dyes and even biological systems, has been
assessed with respect to vibrational analysis [61], exploration of PESs [58, 62], as
well as dynamics in solution within QM/MMMD frameworks [56, 63]. On the other
hand, to our knowledge, no studies exist that investigate the ability of the method
to predict the structural dynamics of transition metal complexes, even though the
performances of �SCF for excitation energies and simulations of UV-vis spectra of
metal-containing molecular systems are not inferior to those achieved when applied
to organic molecules [59, 60]. A second general objective of the present work has
been to assess the reliability of �SCF for prediction of structural and dynamical
properties of transition metal complexes.

We note that the understanding of the processes that govern the ultrafast excited-
state dynamics of transition metal complexes has greatly benefited from simulations
using otherMDcodes.Among them, the ones that have gainedmost popularity for the
study of transition metal complexes are probably the SHARC program [29, 35, 41,
64] and the plane-wave code CPMD [33, 42, 44, 65–67]. These software packages
are quite advanced, they include interfaces to a host of electronic structure codes, as in
the case of SHARC, can work with QM/MM schemes, and implement non-adiabatic
MD in a surface hopping perspective. On the other hand, they have all employed
DFT in its time-dependent formulation (TDDFT) to describe the excited states of
transition metal complexes. Our implementation of excited-state QM/MM BOMD
is, instead, unique in its combination of a cost-effective single determinant method as
�SCF with the computationally expedient GPAW DFT code. Therefore, we see our
�SCF-QM/MM BOMD method not as a step back with respect to already existing
MDcodes, but rather as a complementary technique, which can turn especially useful
when statistical significance and an explicit description of solvation effects can be
privileged over, for example, the inclusion of non-adiabatic effects, as we will see
throughout this thesis.
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Chapter 2
The Diplatinum Complex PtPOP

In the present project we have investigated the photocatalytic diplatinum(II) com-
plex [Pt2(P2O5H2)4]4−, abbreviated PtPOP. The study employed both ultrafast XDS
measurements in aqueous solution, performed together with the group of our exper-
imental collaborators, and a combination of gas-phase DFT and QM/MM BOMD
simulations. The use of experimental and computational methods has proved highly
synergetic: the simulations guided the analysis and interpretation of the XDS data,
while the experiments have been a testing ground for fully assessing the potentialities
of the �SCF-QM/MM BOMD method that has been implemented in the course of
the project. Furthermore, the simulations are used to expand on the knowledge of
the solution properties of the system and move forward in the understanding of the
microscopic mechanisms governing ultrafast relaxation in solution following pho-
toexcitation. In this chapter, we present the model photocatalyst PtPOP, describing
the photophysical, structural and dynamical properties that are already known from
previous studies, and highlighting the pending questions that we aimed to address in
our investigation.

Figure2.1 shows an illustration of the structure of the PtPOP system. Owing
to its nuclear and electronic structures, PtPOP is the prototype system of choice
for photophysical studies within a family of highly photoreactive d8−d8 binuclear
complexes [2]. The UV-vis absorption spectrum of PtPOP in crystal and different
solvents exhibits an intense band around 370nm and a weaker band around 450nm
that are attributed to electronic transition from the highest occupiedmolecular orbital
(HOMO) dσ ∗ antibonding to the lowest unoccupied molecular orbital (LUMO) pσ
bonding metal-metal orbital [3–5]. As a result of the nature of the excitation, the
first singlet and triplet excited states (S1 and T1), having dσ ∗ → pσ character, fea-
ture a significantly shortened Pt−Pt distance. Reported experimental values for the
contraction in crystal and solution lie in the range 0.19–0.31 Å [4, 6–10]. From the
vibronic progression of low temperature UV-vis S0 → S1 and S0 → T1 absorption
bands [3], it has been concluded that the potential energy surfaces of S1 and T1 along
the Pt−Pt coordinate are parallel. Moreover, these states are found, from experi-

Parts of this chapter have been reproduced with permission from Ref. [1], https://doi.org/10.1021/
acs.jpcc.8b00301. Copyright 2018 American Chemical Society.
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Fig. 2.1 Visualization of the
PtPOP molecular complex.
This photocatalytic model
system has been object of
extensive experimental and
computational investigation
during the present Ph.D.
project

ments [3, 4] and previous DFT studies [11, 12], to be separated by a relatively large
energy gap of around 0.65 eV, and isolated from other electronic states. The elec-
tronic structure of the complex, together with the fact that direct spin-orbit coupling
(SOC) between S1 and T1 is forbidden for symmetry reasons [11, 13], accounts for
intersystem crossing (ISC) times between 11.0 and 101.5 ps [3, 14, 15], depending
on solvent and temperature. Besides, the lifetime of T1 is found to be on the order of
microseconds [3]. Ultimately, it is this state that has catalytic activity, being able to
abstract hydrogen and halogen atoms from different substrates [2, 16].

The shape and relative position of the S1 and T1 PESs of the complex determine its
unique photophysical properties.Yet, the topology of the PESs has only been deduced
from optical measurements. One of the goals of our investigation was to compute
the PESs along the Pt−Pt coordinate in the first two excited states for the first time.
This represented both a benchmark of the performances of �SCF with respect to
structural predictions of transition metal complexes, and an indication that proposed
structures and PES shapes deduced indirectly from optical experiments are indeed
justified. Furthermore, the calculations were also aimed at testing the assumption
made in previous computational works on similar systems [17, 18], which simulated
the singlet excited-state dynamics by using the gradients of the triplet surface.

Previous ultrafast studies have exploited the peculiar photophysical properties
of PtPOP to characterize, by femtosecond optical measurements, the evolution of
coherent wave packet vibrations along the Pt−Pt coordinate in S1 [14] and recently
also in the T1 state [19]. Some of the aspects of the ultrafast relaxation following
excitation in the S1 state in different solvents where uncovered in a combined fluo-
rescence up-conversion and broadband transient absorption study by van der Veen
et al. [14]. It was found that the coherence decay of vibrational wave packets with a
period of ∼224 fs takes place concomitantly with vibrational cooling over a remark-
ably long time of 1–2 ps. The observations were interpreted as a signature of the



2 The Diplatinum Complex PtPOP 15

strong harmonicity of the potential along the Pt−Pt coordinate, which in turn is due
to the rigidity of the cage of P-O-P ligands, and effective shielding from random sol-
vent fluctuations provided by the latter. Despite the fact that the experiments could
characterize the time scales of vibrational coherence, cooling and ISC in solution,
the mechanistic details behind these processes are far from being well understood.
Hypotheses of mechanisms of vibrational cooling have been put forward, but they
are not based on direct experimental evidence; rather they rely on the observation of
solvent trends [14] or the comparison with the behaviour of diplatinum systems with
modified ligands under similar experimental conditions [19]. Thus, van der Veen et
al. [14] explain differences in the vibrational decay rates for excitation in the S1 state
observed for different solvents as an evidence of direct solute-solvent interactions
that can only occur along the open axial Pt−Pt coordination sites of the molecule.
More recently, Monni et al. [19] seem to exclude this possibility. These authors argue
that, since no big differences with respect to the decoherence times of a perfluorob-
orated derivative of PtPOP for which the bulkier ligands offer better shielding of the
Pt atoms from the environment were observed, the origin of coherence decay must
arise from anharmonic couplings of the Pt−Pt motion with other internal vibrational
modes in the complex.

The mechanism of ISC from S1 to T1 in PtPOP is also a recurrent subject of dis-
cussion in the PtPOP literature [2, 11, 13, 14]. All recent experimental indications
seem to point in the direction of a possible involvement of a dark mode that would
lower the D4h symmetry of the Pt2P8 core of the complex, allowing for direct SOC
or lowering the energy of other triplet states, but this mode has never been observed
experimentally. The scenario is complicated by the fact that up to now no experi-
mental method has been able to reliably assess the changes affecting the structure
of the ligands or the presence of large amplitude distortions in the excited state in
solution.

In the light of all this, a second objective of our investigation was to clarify the
aspects of the excited-state vibrational relaxation of PtPOP in solution that have
remained so far poorly understood, shedding light on questions like: what is the
geometry of the ligand cage in the excited state? Are there ligand deformations that
can influence the intersystem crossing rates? What is the role of the solvent in the
ultrafast relaxation? For this purpose, we used �SCF in extensive nonequilibrium
gas-phase and solution-phase simulations in conjunction with thorough vibrational
analysis.

While the excited-state structural dynamics of PtPOP has been object of exten-
sive ultrafast experimental investigations in recent years, no studies exist that address
the dynamics in the ground state along the same lines. The present understanding
of the ground-state potential surface of the molecule is limited to the observations
of the early low-temperature emission [4] and Raman [20] spectroscopic experi-
ments, which deduced a highly harmonic potential along the Pt−Pt coordinate, with
a vibrational period of around 303 and 283 fs in crystal [4] and aqueous solution
[20], respectively. But, for example, no ultrafast studies have been reported that
investigate the vibrational relaxation in the ground state. This is mainly due to the
fact that pump-probe techniques are all based on photoexcitation of the sample, and
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hence usually highlight the excited-state dynamics at the expense of the dynamics
occurring in the ground-state molecular ensemble perturbed by the laser. We have
participated to an experimental campaign performed at the Linac Coherent Light
Source (LCLS) XFEL facility [21, 22] of Stanford to study by time-resolved XDS
measurements in water the coherent vibrational dynamics of PtPOP in the ground-
state potential. Direct tracking of ground-state dynamics was enabled by a careful
choice of pump-pulse parameters to suppress any excited-state contribution in the
time dependence of theXDS signal. QM/MMBOMDsimulationswere subsequently
used to substantiate the outcome of the ultrafast XDS experiments.
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Chapter 3
Outline of the Thesis

To help the reader find his/her way through the thesis, we summarize here in short,
compact form the contents and scopes of each of the following chapters.

Chapter 4 introduces the reader to the theory of nuclear dynamics from the full
time-dependent Schrödinger equation to the approximations that form the basis of
ab initio on-the-fly Born-Oppenheimer Molecular Dynamics (BOMD).

Chapter 5 delves into the details of the implementation of a �SCF method with
Gaussian smeared constraints in the DFT code GPAW, realized during the present
Ph.D. project. In order to bring out its salient features and differences with respect to
other, more standard�SCF DFTmethods, an effort is made to show the origin of the
equations that form its basis, providing all necessary theoretical background on DFT
and GPAW. Finally, the chapter reports the results of tests of the newly implemented
�SCF scheme on a diatomic system that are performed to assess the robustness and
reliability of the method with respect to structural predictions.

Chapter 6 describes the QM/MMelectrostatic embedding scheme inGPAW/ASE.
In addition, it establishes the link between all the components of theQM/MMBOMD
simulations performed in the present work.

Chapters 7 and 8 deal with the experimental side of the present project. Chapter 7
provides a broad outline of the principles of time-resolved X-ray diffuse scattering
(XDS) experiments, and describes the XDS measurements performed on PtPOP in
water at the LCLS XFEL of Stanford. Chapter 8 bridges experiments and theory by
showing how the scattering signal can be simulated in order to assist the analysis and
interpretation of the experimental data.

Chapter 9 reports the results of preliminary tests and gas-phase calculations on
PtPOP using GPAW. This chapter includes the first calculated potential energy sur-
faces (PESs) of the complex, and highlights the finding that the lowest-lying singlet
and triplet excited states of the molecule have a different symmetry than that of the
ground state, in contrast to what so far believed.

Chapter 10 sets the stage for the presentation of the results of the QM/MMBOMD
simulations on PtPOP in water by illustrating the computational procedure used to
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perform them, focusing in particular on the choice of initial conditions to simulate
laser-induced out-of-equilibrium dynamics in the ground and first singlet excited
states.

Chapter 11 deals with the equilibrium thermal properties of PtPOP as obtained
from the NVT equilibrated parts of the QM/MM trajectories. A detailed characteri-
zation of the solvation shell structure is presented, underlining the link with previous
experimental evidence. Moreover, this chapter shows how the simulations are used
to improve on the structural modelling of the XDS data of PtPOP leading to the
first experimental determinantion of the change in Pt–Pt distance in the lowest-lying
singlet excited state in water.

Chapter 12 presents a picture of simultaneous ground- and excited-state dynam-
ics following laser excitation obtained through nonequilibrium �SCF-QM/MM
BOMD simulations and non-stationary ground-state distributions from an equilib-
rium QM/MM ensemble. The picture shows how the formation of a non-stationary
hole in the ground-state distribution of Pt–Pt distances accompanied by a vibra-
tionally “cold” excited state can explain the origin of the oscillatory trend observed
in the time-resolved XDS signal.

Chapter 13 presents the results of nonequilibrium �SCF-QM/MM BOMD sim-
ulations that shed light on the mechanisms of vibrational relaxation of PtPOP in the
first singlet excited state in water. This chapter uncovers the paths of dissipation of
excess Pt–Pt vibrational energy to ligand deformation modes, and the role of the
solvent in stabilizing them.



Part II
Theoretical and Computational Methods



Chapter 4
Nuclear Dynamics

In all formulas and derivations presented in this part of the thesis we will make use of
atomic units, in which the electron massme, the elementary charge e and the reduced
planck constant � = h/2π are unity.

In general, the exact evolution of a non-relativistic molecular system is given by
the time dependence of the total electronic and nuclear wave function |�〉, obtained
by solving the time-dependent Schrödinger equation:

i
∂

∂t
|�〉 = H|�〉 (4.1)

where H is the total Hamiltonian for coupled electronic-nuclear motion, consisting
of a sum of the nuclear kinetic energy operator Tn and the electronic Hamiltonian
He. For a system of Nn nuclei and Ne electrons, He can be expressed as:

He = −
Ne∑

i=1

1

2
∇2
i −

Ne∑

i=1

Nn∑

α=1

Zα

| Rα − ri | +
Ne∑

i=1

Ne∑

j>i

1

| ri − r j | +
Nn∑

α=1

Nn∑

β>α

ZαZβ

| Rα − Rβ |
= Te + Vne + Vee + Vnn (4.2)

where Rα and ri are respectively the position vectors of nucleus α and electron i ,
while Zα is the charge of nucleus α (corresponding to its atomic number). In Eq.
(4.2), the first term is the kinetic energy of the electrons, the second term represents
the Coulomb attraction between electrons and nuclei, and the third and fourth terms
are the electron-electron and internuclear repulsion, respectively, the latter being a
constant for a given nuclear configuration.

Directly finding analytical solutions to Eq. (4.1) is impracticable even for the
smallest polyatomic systems. The route to the solution of the problem of deter-
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mining ab initio the dynamics of a molecular system starts from a separation of
the electronic and nuclear motions. In fact, owing to the large difference in mass
between electrons and nuclei, the time scales of electronic motion are much shorter
than those that characterize the motion of the nuclei. Therefore, we can define an
electronic Hamiltonian for each set of nuclear positions Rα. The solutions of the
time-independent electronic Schrödinger equation for fixed nuclear configurations:

He|�n;R〉 = En(R)|�n;R〉 (4.3)

are stationary electronic wave functions |�n;R〉with corresponding energies En(R),
both dependent parametrically on the collective set of nuclear coordinatesR. The total
wave function |�〉 can be exactly expanded in the complete set of these electronic
states. In the coordinate representation:

�(R, r) = 〈R, r|�〉 =
∞∑

n

〈R,�n;R|�〉〈r|�n;R〉

=
∞∑

n

χn(R) �n(r;R) (4.4)

Equation (4.4) is the Born-Huang, or adiabatic expansion [1], and defines the R-
dependent expansion coefficientsχn(R) of the total wavefunction as projections onto
a direct product of an eigenstate of the position operator with a particular electronic
state |R〉 ⊗ |�n;R〉 = |R,�n;R〉.

Now, it is understood that the problem of describing the time evolution of a
molecular system has been reduced to the determination of the time dependence of
the functions χn(R). Obtaining the coefficients χn(R) can be done by solving the
following set of coupled differential equations (see Ref. [2] for a complete derivation
of this result):

i
∂

∂t
χn(R) = [

Tn + En(R)
]
χn(R)

−
∞∑

m

Nn∑

α=1

1

2Mα

[〈�n;R|∇2
α|�m;R〉

+ 2〈�n;R|∇α|�m;R〉 · ∇α

]
χm(R) (4.5)

where Mα is the mass of nucleus α. The terms with n �= m appearing in the double
summation over electronic states and nuclei on the right hand side of Eq. (4.5) couple
different electronic states through the nuclear motion and define the non-adiabatic
quantum dynamics of the system. Terms with n = m are usually called diagonal
couplings [2], even if, strictly speaking, they do not couple different electronic states.
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4.1 The Born-Oppenheimer Approximation

Aconsiderable simplification of the equations of nuclearmotion (4.5) can be achieved
by neglecting all non-adiabatic and diagonal coupling terms, obtaining:

i
∂

∂t
χn(R) = [

Tn + En(R)
]
χn(R) (4.6)

The approximation that we have just introduced is the Born-Oppenheimer (BO)
approximation [1]. It implies complete separation of the equations for nuclear and
electronicmotion. By neglecting all couplings between electronic states it is assumed
that the electronic character of the system does not change during nuclear motion,
as there cannot be transitions between electronic states. As a consequence, only one
term n appears in the expansion of the total wave function Eq. (4.4).

From Eq. (4.6) we can define a Hamiltonian for the motion of the nuclei as the
sum of the nuclear kinetic energy operator and the electronic state energy En . Thus,
in the BO approximation, the eigenvalues En of the time-independent electronic
Schrödinger equation represent the potential energy surfaces (PESs) on which the
nuclei move. One commonly refers to the coefficients χn(R) as nuclear wave func-
tions, although they are not necessarily eigenstates of this nuclearHamiltonian, rather
they can be any superposition of stationary nuclear states satisfying Eq. (4.6) [3].

TheBO approximation is widely employed in simulations ofmolecular systems in
which the motion of the nuclei is confined in well separated electronic potentials, far
from regions of the electronic and nuclear configuration space where non-adiabatic
effects are important.

4.2 Ab Initio Born-Oppenheimer Molecular Dynamics

A further approximation that can be made on the basis of the large mass of the
nuclei as compared to that of the electrons, is to describe the dynamics of the nuclei
using classical equations of motion. In its most generic formulation, ab initio Born-
Oppenheimer Molecular Dynamics (BOMD) [4, 5] propagates a system of atoms in
a given adiabatic electronic state n by integrating Newton’s equations of motion:

∂2Rα

∂t2
− Fα

Mα
= 0 (4.7)

with forces Fα computed as the gradients of the eigenvalues of the electronic
Schrödinger equation (Eq. (4.3)) for state n (Fα = −∇αEn(R)). Equations (4.3)
and (4.7) are the basic equations of ab initio BOMD simulations.
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One strategy involves solving Eq. (4.3) for different nuclear configurations, and
fitting the resulting points to an appropriate function to obtain a “global” PES for
the classical trajectory propagation. However, obtaining accurate “global” PESs for
systems with more than three or four atoms can be extremely challenging [5], thus
posing a limitation to the utilization of this method for simulations of the dynamics of
large molecular systems. A second strategy consists in solving simultaneously Eqs.
(4.3) and (4.7), which means computing, at each step of the classical propagation, ab
initio energy and gradients. Ab initio BOMD simulations based on this approach are
usually referred to as direct or on-the-fly methods, and allow, in principle, to explore
the full, unconstrained space of nuclear configurations.

The present work is concerned with this second strategy as a route to simulate the
ground- and excited-state dynamics of systems as large as transitionmetal complexes,
including explicit solvent effects. In Chap.6 we will see how solvent effects can be
taken into account in a multiscale fashion within the scheme presented herein, and
how the classical equations of motion can be integrated to reproduce an NVT, or
canonical, ensemble. In the following chapter, initially, we will have a closer look at
electronic structuremethods for solving the time-independent electronic Schrödinger
equation based on density functional theory (DFT), with particular focus on the
projector augmented wave (PAW) method.

The starting point of all electronic structure methods is the variational princi-
ple, which states that the expectation value of the electronic Hamiltonian given any
approximate wave function |�;R〉:

〈E〉 = 〈�;R|He|�;R〉
〈�;R|�;R〉 (4.8)

is an upper bound to the exact energy. The variational principle has a disarmingly
simple form. For the ground state:

〈E〉 � E0 (4.9)

where the equality holds onlywhen |�;R〉 is equal to the exactwave function |�0;R〉
of the ground state. Hence, obtaining the solutions of the time-independent electronic
Schrödinger equation can be done by minimizing the energy as a functional of the
electronic wave function, or, as we will see soon, as a functional of the electron
density, subject to specific constraints, the nature of which is determined by the
choice of the variational parameters.
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Chapter 5
Density Functional Methods

In this chapter, we embark on an excursion into the realm of density functional meth-
ods for solving the time-independent electronic Schrödinger equation (Eq. (4.3)). The
first part (Sects. 5.1–5.3) is intended to be a general outline of the principles and foun-
dations of density functional theory (DFT), although an effort is made to illustrate
the genesis of its workhorse equations. For comprehensive reviews on DFT and step-
by-step derivations the reader can consult Refs. [1–3]. The second part (Sects. 5.4
and 5.5) is dedicated to the specific DFT code used during this project, and to the
development works done in it.

By examining the expression for the electronic HamiltonianHe given in Eq. (4.2),
it is easy to see that for a system of Ne electrons, He is completely specified by the
external potential of the nuclei (“external” from the point of view of the electrons):

υ(r) = −
Nn∑

α=1

Zα

| Rα − r | (5.1)

Therefore, the nuclear charges and positions, which determine υ(r), uniquely define
the electronic energy and all other properties of a system of Ne electrons. The
premises of DFT stem from the simple realization that the electron density, which
is a physical observable, provides all the quantities required to construct υ(r) and
fix the electronic Hamiltonian. Recalling a result of wave mechanics [4], the elec-
tron density is obtained from the wave function squared integrated over the Ne − 1
electronic spatial coordinates ri and the Ne spin coordinates ξi . For the ground state:

n(r) = Ne

∫
· · ·
∫

| �0
(
r, ξ1, x2, . . . , xNe;R

) |2 dξ1dx2 · · · dxNe (5.2)

where we have introduced the notation xi to indicate the collection of spatial and
spin coordinates for electron i (xi = {ri , ξi }). We see that n(r) is a function of three
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variables that integrates to the total number of electrons:

∫
n(r)dr = Ne (5.3)

Moreover, the positions and charges of the nuclei can be inferred [3], respectively,
from the positions of local cusps in the density and from the relation:

∂

∂dα
n(dα)

∣∣∣
dα→0+

= −2Zαn(0) (5.4)

where dα is the radial distance from nucleus α and n is the density averaged over a
sphere.

5.1 The Hohenberg-Kohn Theorems

In this and the following two sections we will lay out the standard DFT formalism
for the electronic ground state, leaving the discussion of excited states to Sect. 5.5.

Since all information that is needed to determine the electronic Hamiltonian can
be deduced from the electron density, there must be a one-to-one correspondence
between n(r) and the electronic energy corresponding to the exact wave function.
The formal justification that the electron density can be used as basic variable in
solving the electronic Schrödinger equation is provided by the two Hohenberg-Kohn
theorems [5].

The first theorem is a proof that the external potential υ(r), and hence the elec-
tronic wave function and energy of the ground state, are uniquely determined by the
electron density. The demonstration is done by reductio ad absurdum using the vari-
ational principle for the ground state (see Eqs. (4.8) and (4.9)). For ease of notation
we will drop from now on the parametric dependence of the electronic wave function
on the collective set of nuclear coordinatesR. Let us assume there exist two external
potentials υ(a)(r) and υ(b)(r) associated with the same ground-state electron density
n(r). The two potentials are not necessarily Coulomb potentials set by the nuclei, but
have to be one-electron operators. υ(a)(r) and υ(b)(r) define two different electronic
Hamiltonians H(a)

e and H(b)
e , and two different ground-state wave functions |�0

(a)〉
and |�0

(b)〉, which are taken to be normalized (〈�0
(a)|�0

(a)〉 = 〈�0
(b)|�0

(b)〉 = 1).
The variational principle for |�0

(b)〉 with respect to the Hamiltonian H(a)
e gives:

〈�0
(b)|H(a)

e |�0
(b)〉 > E (a)

0 (5.5)

By rewriting the left hand side of Eq. (5.5) as:
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〈�0
(b)|H(a)

e |�0
(b)〉 = 〈�0

(b)|H(b)
e |�0

(b)〉 + 〈�0
(b)|H(a)

e − H(b)
e |�0

(b)〉
= E (b)

0 +
∫

n(r)
[
υ(a)(r) − υ(b)(r)

]
dr (5.6)

where the second equality comes from the fact that υ(a)(r) and υ(b)(r) are one-
electron operators, we arrive at the following expression:

E (b)
0 +

∫
n(r)

[
υ(a)(r) − υ(b)(r)

]
dr > E (a)

0 (5.7)

Analogously, we could repeat the derivation using |�0
(a)〉 as an approximate wave

function for H(b)
e , obtaining:

E (a)
0 −

∫
n(r)

[
υ(a)(r) − υ(b)(r)

]
dr > E (b)

0 (5.8)

Adding Eqs. (5.7) and (5.7) on both sides gives:

E (b)
0 + E (a)

0 > E (a)
0 + E (b)

0 (5.9)

which is obviously an impossible conclusion, showing that the density n(r) must
define a single external potential, and hence a unique Hamiltonian and a unique
ground-state wave function |�0〉 with associated energy E0. The important impli-
cation of this result is that we can express the electronic energy of the system as a
unique functional of the density (E [n]).

By analogy with the definition of the electronic Hamiltonian in Eq. (4.2), we can
separate the total energy functional in the following terms:

E [n] = Te [n] + Vne [n] + Vee [n] + Vnn (5.10)

where Te [n] is the electronic kinetic energy, Vne [n] and Vee [n] are, respectively, the
Coulomb attraction between electrons and nuclei and the electron-electron interac-
tion:

Vne [n] = −
Nn∑

α=1

∫ Zαn(r)
| Rα − r |dr =

∫
υ(r)n(r)dr (5.11)

Vee [n] = J [n] + xc term

= 1

2

∫ ∫
n(r)n(r′)
| r − r′ | drdr

′ + xc term (5.12)

and, finally, Vnn is the constant (within the BO approximation) internuclear repulsion.
In Eq. (5.12) we have separated the classical electron-electron repulsion (J [n]) from
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a nonclassical term, which makes up the major portion of the so-called exchange-
correlation (xc) energy of the interacting system of electrons.

The second Hohenberg-Kohn theorem gives the perscription for how to evaluate
the energy of the ground state from the electronic Schrödinger equation using the
electron density. It is basically an energy variational principle for the electron density.
Consider an approximate electron density n′(r) that is positive definite (n′(r) � 0)
and integrates to the total number of electrons (

∫
n′(r)dr = Ne). Then, the value of

the energy functional of this approximate density will be greater than or equal to the
true ground-state energy:

E
[
n′] � E0 [n] (5.13)

The idea of using a function of only three variables as variational parameter to
minimize the energy of a molecular system is particularly appealing in view of a
reduction of the complexity brought about by the 4Ne variables (3Ne spatial and Ne

spin coordinates) of the electronic wave function in wave mechanics.
Moving along these lines, we can reformulate the electronic Schrödinger equation

(Eq. (4.3)) as the problem of minimizing the functional E [n] with respect to the
electron density:

δE [n] =
∫

δE [n]

δn(r)
δn(r)dr = 0 (5.14)

or equivalently:

δE [n]

δn(r)
= 0 (5.15)

where, in Eq. (5.14), we have used the definition of differential of a functional,

and
δE [n]

δn(r)
is the functional derivative of E [n] with respect to n(r). Minimization

should be carried out under the constraint that n(r) integrates to the total number of
electrons:

∫
n(r)dr − Ne = 0. (5.16)

This problem can be solved using the method of Lagrange multipliers [3], which
leads to the following equations:

δ

δn(r)

[
E [n] − μ

(∫
n(r)dr − Ne

)]
= 0

⇒ δE [n]

δn(r)
− μ = 0 (5.17)
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Equation (5.17) is called Euler-Lagrange equation and the Lagrange multiplier μ is
the chemical potential. By inserting the definition of the total energy functional Eq.
(5.10) into Eq. (5.17), and using the expression for the classical attraction between
the electron density and the nuclei given in Eq. (5.11), we finally obtain:

δ

δn(r)
[Te [n] + Vee [n]] + υ(r) = δF [n]

δn(r)
+ υ(r) = μ (5.18)

where we have defined the energy functional F [n] as the sum of the electronic
kinetic energy functional Te [n] and the electron-electron interaction term Vee [n].
F [n] is a universal functional of the electron density, in that it does not dependent
on the external potential υ(r). If we knew the form of F [n] we could exactly solve
Eq. (5.18) for the electron density and, thus, determine the true electronic energy of
a system of atoms by inserting the resulting n(r) into Eq. (5.10). Unfortunately, the
functional F [n] is not known, and DFT does not provide any indication on how we
might proceed to find the exact form of it.

The lack of knowledge of F [n] poses severe limitations to the applicability of
orbital-free DFT to molecular and solid systems of interest. Historically, there have
been attempts to develop orbital-free density functionalmodels for a uniform electron
gas (the so-called Thomas-Fermi and Thomas-Fermi-Dirac theories [1–3]), however
these models fail to predict bondings between atoms. Efforts to try to overcome this
challenge that are based on finding strategies to construct density functionals using
machine learning [6] are currently being undertaken. The idea is pursued, in particu-
lar, by the group of Burke [6, 7]. Such machine learning density functional methods
have only very recently started tomove their first steps fromone-dimensional systems
to simulations of realistic molecular systems [8].

5.2 The Kohn-Sham Equations

At this point, we could have turned our backs on DFT if it were not for Kohn and
Sham, who, in 1965, presented a formulation of DFT, the Kohn-Sham (KS) DFT
method [9], that has found, and continues to find, wide spread use in many different
sectors of science [10].

The method brings into play a wave function expressed as a single Slater deter-
minant:

�
(
x1, x2, . . . , xNe

) = 1√
Ne!

∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψNe(x1)
ψ1(x2) ψ2(x2) · · · ψNe(x2)

...
...

. . .
...

ψ1(xNe) ψ2(xNe) · · · ψNe(xNe)

∣∣∣∣∣∣∣∣∣

= |ψ1(x1)ψ2(x2) · · · ψNe(xNe)〉
= |ψ1ψ2 · · ·ψNe〉 (5.19)
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where each ψi (x) is a spin orbital given by the product of a spatial orbital φi (r) and
a spin function α(ξ) or β(ξ). The spatial orbitals and the spin functions are assumed
to be orthonormal. This single-determinant wave function is the exact wave function
for the ground state of a system of Ne noninteracting electrons. The exact kinetic
energy of a system of noninteracting electrons can be expressed using a set of Nsorb

spin orbitals (with Nsorb � Ne) as:

T s
e [n] =

Nsorb∑

i=1

fi 〈ψi | − 1

2
∇2
i |ψi 〉 (5.20)

The system also has an exact electron density that is given by [3, 4]:

n(r) =
Nsorb∑

i=1

fi | ψi (x) |2 (5.21)

In Eqs. (5.20) and (5.21), the fi are occupation numbers for the orbitals. For the
ground state, the assignment of the occupation numbers follows the aufbau principle,
i.e. fi is equal to 1 for the lowest energy orbitals, and 0 for all other orbitals. Note
that in Eq. (5.20) we have indicated the kinetic energy as an implicit functional of
the electron density through Eq. (5.21).

The main idea underlying KS DFT is to use Eqs. (5.20) and (5.21) to express the
kinetic energy and density of a real system of interacting electrons. The resulting
KS total energy functional for the real system takes the following form:

EKS [n] = T s
e [n] + Vne [n] + J [n] + Exc [n] + Vnn (5.22)

where the exchange-correlation energy functional Exc [n] is defined as the difference
between the exact kinetic energy of the interacting system of electrons (Te [n]) and
T s
e [n], plus all nonclassical contributions to the electron-electron interaction energy

(Vee [n] − J [n], as seen from Eq. (5.12)):

Exc [n] = Te [n] − T s
e [n] + Vee [n] − J [n] (5.23)

Thus, the exchange-correlation energy consists of a correction to account for the
interacting nature of the true system. The exact form of Exc [n] is not known. How-
ever, the correction is, in most cases, small compared to the absolute value of the
kinetic energy T s

e [n] [1, 3], such that an approximate Exc [n] usually suffices to
achieve fairly accurate results in many cases.

By inserting the definitions of the terms T s
e [n], Vne [n] and J [n] given by Eqs.

(5.20), (5.11) and (5.12), respectively, we can rewrite Eq. (5.23) as:
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EKS [n] =
Nsorb∑

i=1

fi 〈ψi | − 1

2
∇2
i |ψi 〉 +

∫
υ(r)n(r)dr + 1

2

∫ ∫
n(r)n(r′)
| r − r′ | drdr

′

+ Exc [n] + Vnn (5.24)

Since the density is obtained from the orbitals ψi (x), which from now on will be
referred to as “KS orbitals”, the Hohenberg-Kohn variational problem (Eqs. (5.14)–
(5.17)) becomes, in the framework of the KS theory, the problem of minimizing the
value of the energy functional EKS [n] with respect to theψi (x), under the constraint
that they are orthonormal:

∫
ψ∗
i (x)ψ j (x)dx = δi j (5.25)

where δi j is the Kronecker delta. This leads to the following equations:

δ

δψ∗
i (x)

⎡

⎣EKS [n] −
Nsorb∑

i=1

Nsorb∑

j=1

ε′
i j

(∫
ψ∗
i (x)ψ j (x)dx − δi j

)⎤

⎦ = 0 (5.26)

where ψ∗
i (x) is the complex conjugate of ψi (x), and the ε′

i j are Lagrange multipliers.
With the explicit definition of EKS [n], Eq. (5.24), inside Eq. (5.26), after computing
the functional derivatives with respect to the ψ∗

i (x), we obtain a set of nonlinear
coupled equations:

fihKSψi (x) =
Nsorb∑

j=1

ε′
i jψ j (x) (5.27)

where the single-particle KS Hamiltonian hKS is defined as:

hKS = −1

2
∇2
i + υKS(r) (5.28)

with the effective KS potential υKS(r) given as a sum of three terms:

υKS(r) = υ(r) + υH(r) + υxc(r) (5.29)

The first term is the usual external potential of the nuclei (υ(r)),υH(r) is the so-called
Hartree potential:

υH(r) =
∫

n(r′)
| r − r′ |dr (5.30)

and the exchange-correlation potential υxc(r) is the functional derivative of the
exchange-correlation energy with respect to the electron density:
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υxc(r) = δExc [n]

δn(r)
(5.31)

Since the matrix ε′ with elements ε′
i j is a Hermitian matrix [3], we can apply a

unitary transformation of the KS orbitals that diagonalizes ε′ while leaving invariant
the wave function � (x) of Eq. (5.19) and the Hamiltonian hKS [3, 4]. If we do so,
we obtain from (5.27) a new set of simplified equations:

hKSψi (x) = εiψi (x) (5.32)

where εi = ε′
i i/ fi for fi 
= 0. These equations are termed KS equations and must be

solved for the KS orbitals iteratively, until convergence of the electron density, since
the density appears in the expression of the Hamiltonian hKS (Eq. (5.28)). Thus,
just like the Hartree-Fock (HF) theory of wave mechanics [4], KS DFT relies on a
self-consistent field (SCF) procedure to obtain the orbitals that minimize the total
energy. Once these are available, the energy can be determined by first computing
the electron density according to Eq. (5.21) and then inserting the result into Eq.
(5.24).

As for how to determine the KS orbitals in practice, different strategies are avail-
able. The route most commonly followed by quantum chemists (which is also the
method of choice in wave function theories as HF) is to expand the spatial part of
the KS orbitals in a basis of localized functions ζμ(r) resembling atomic orbitals:

|φi 〉 =
∑

μ

ciμ|ζμ〉 (5.33)

The basis set functions are usually taken as linear combinations of Gaussian-type
orbitals (GTOs). The coefficients appearing in the expansion of the KS orbitals are
determined by solving the matrix equation obtained from the variational procedure
in the atomic orbital basis set. The computational cost, in this case, scales as N 4

b ,
with Nb the number of basis functions employed in the calculation.

However, this is not the only method for solving the KS equations. An expansion
of the orbitals in a plane-wave basis set is also possible. This is the approach that
is usually preferred in the solid-state physics community to model periodic systems
[1]. Since plane waves are unsuited to describe the strong localization and rapidly
varying nodal structure of the core orbitals, Effective Core Potentials (ECPs), or
Pseudo-Potentials (PPs), are needed to model the core electrons [1]. Sometimes, as
is the case for part of the calculations that will be presented in this work, ECPs
are also used in conjunction with an explicit description of the valence electrons
in terms of localized orbital basis sets. Considerable savings of computational time
can be achieved when employing ECPs for heavy atoms, such as transition metal
complexes, instead of localized basis set functions, because, otherwise, the number
of basis functions that would be required is very large [1]. Moreover, relativistic
effects can be taken into account by fitting the analytical form of the ECPs to results
from reference relativistic calculations.
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A drawback of PP methods is that all information on the electronic structure of a
system near the nuclei are lost. The Projector Augmented Wave (PAW) method [11,
12] is a third alternative strategy to the solution of the KS equations that allows, in
principle, to retain all core properties at a computational cost that is comparable to
the one offered by PP approaches. The theory of the PAW method can be derived as
an exact theory, and is treated extensively in the following section (Sect. 5.4).

Another aspect that one must consider before venturing into the “black box” of
KS DFT calculations, is the choice of xc functional. As already mentioned, the form
of this functional has to be approximated. The literature offers an overwhelming
amount of different xc functionals. Some of them, like PBE [13], are the result of a
rational design following a set of conditions that a functional is required to satisfy.
Most often, however, the functionals are constructed by fitting some parameters to
accurate experimental data. The very popular BLYP [14, 15] functional, for example,
belongs to this other class of xc functionals.

As there is no unique parameter that can be varied to systematically increase the
accuracy of the xc functionals, a classification of them is not easy. On the other hand,
it is possible to define a hierarchy of density functional approximations [1, 16] on the
basis of the “ingredients” used in the preparation of the xc functionals. The simple rule
is: adding more “ingredients” is expected to give increasingly improved functionals.
At the bottom of the ladder of density functional approximations we find the local
density approximation (LDA), which makes the xc functional depend exclusively
on the local values of the electron density. The LDA exchange is the exchange
energy of a uniform electron gas, for which an exact analytical form exists. The
most common LDA correlation functionals can be traced back to the VWN [17] and
PW [18] parametrizations, which have been fitted to accurate quantum Monte Carlo
results. The next level of approximation is to make the functional depend also on the
gradients of the density (generalized-gradient approximation (GGA)). Popular GGA
exchange functionals are B86 [19], B88 [14] and PBE (exchange) [13]; while among
the GGA correlation functionals we can mention PW91 [20], PBE (correlation) [13]
and LYP [15]. The name of an xc functional is, usually, and in particular for GGA
functionals, constructed by merging the acronyms for the exchange and correlation
parts; so, for example, BLYP is B88 exchange plus LYP correlation. The direct
QM/MM simulations of PtPOP in water performed in the present work made use
of the GGA functional BLYP to describe the electronic structure of the complex.
Finally, at the high rungs of the ladder we find hybrid functionals, such as B3LYP
[21, 22], that include some portion of exact HF exchange energy. The results of
B3LYP calculations on PtPOP are used, in the present work, to asses the quality of
the geometry of the complex as predicted by BLYP.
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5.3 Restricted and Unrestricted Formalisms

Here, we provide some definitions concerning the construction of Slater determinants
to represent the electronic wave function in KS DFT, most of them valid also in HF
theory. We introduce some concepts and notations that will be used throughout this
thesis, especially when discussing DFT calculations for excited states (Sect. 5.5).

One can conceive different kinds of Slater determinants, depending on the type
of constraint that is enforced on the spatial part of the spin orbitals ψi (x).

In the restricted formalism, spin orbitals with α and β spin functions are con-
strained to have the same spatial part. Let us consider first a system with an even
number of electrons Ne, and where all spatial orbitals are doubly occupied, meaning
that for each of them there will be two electrons. The set of Ne spin orbitals that form
the determinant is obtained from Ne/2 spatial orbitals by multiplying each of them
once by a spin function α (ψi−1(x) = φi/2(r)α(ξ), i = 2, 4, . . . , Ne), and once by
a spin function β (ψi (x) = φi/2(r)β(ξ), i = 2, 4, . . . , Ne). The determinant thus
obtained is a restricted closed-shell determinant (RCS). An example of such deter-
minant is given in Fig. 5.1 for a four electron system. Using the short-hand notation
introduced in Eq. (5.19), we can write a general restricted closed-shell determinant
as:

1�RCS
(
x1, x2, . . . , xNe−1, xNe

) = |ψ1ψ2 · · ·ψNe−1ψNe〉
= |φ1φ1 · · ·φNe/2φNe/2〉 (5.34)

Fig. 5.1 Examples of single Slater determinants. From left to right: restricted closed-shell (RCS),
doublet restricted open-shell (ROS), and approximate doublet unrestricted open-shell (UOS) deter-
minants
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where, in the last line, we have further introduced a notation in which spin orbitals
are indicated with their spatial part only (φi corresponds to a spin orbital containing
a β spin function). The superscript on the left of �RCS in Eq. (5.34) tells us that the
determinant is a singlet, i.e. its spin multiplicity given by 2S + 1, where S is the spin
angular momentum quantum number, is 1. This means that�RCS is an eigenfunction
of the square of the total spin angular momentum operator S:

S2|�RCS〉 = S(S + 1)|�RCS〉 = 0 (5.35)

Furthermore, as any single determinant [4], �RCS is an eigenfunction of the z com-
ponent of the total spin operator:

Sz|�RCS〉 = MS|�RCS〉 = 0 (5.36)

(in general, for a single determinantMS = Nα
e − Nβ

e

2
, where Nα

e and Nβ
e are, respec-

tively, the number of α and β electrons). The electron density of a Slater determinant
of the form of �RCS is given, after integrating out the spin functions (compare with
Eq. (5.21)), by:

n(r) = 2
Ne/2∑

i=1

| φi (r) |2 (5.37)

where the occupation number 2 in front of the summation derives from the fact that
each spatial orbital φi (r) is doubly occupied.

Next we consider a system with an odd number of electrons. The determinant
describing this system is necessarily an open-shell determinant, since there is at
least one unpaired electron. We might use the restricted formalism also in this case.
Figure5.1 shows a restricted open-shell (ROS) determinant of three electrons with
one unpaired electron.A restricted open-shell determinantwith one unpaired electron
is a doublet, and can be written as:

2�ROS
(
x1, x2, . . . , xNe−1, xNe

) = |φ1φ1 · · · φ(Ne−1)/2φ(Ne+1)/2〉 (5.38)

Note, however, that not all open-shell restricted determinants are eigenfunctions of
S2. We will see examples of such cases in Sect. 5.5 when treating determinants with
open-shell electrons of different spin.

In the open-shell determinant given byEq. (5.38), electronswith spinα experience
a different exchance potential than the β electrons, due to Nα

e 
= Nβ
e and the fact that

exchange interactions are only between electrons with the same spin. Therefore, we
might expect the spatial part of the α spin orbitals to be different from that of the β
spin orbitals. In the unrestricted formalism, α and β spin orbitals are allowed to have
different spatial parts. Thus, the spin orbitals are constructed from a set ofφα

i (r) and a
set of φβ

i (r) spatial orbitals (see the example in Fig. 5.1). The unrestricted open-shell
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(UOS) determinant for the case where only one electron is unpaired can be written
as:

�UOS
(
x1, x2, . . . , xNe−1, xNe

) = |φα
1φ

β

1 · · · φβ

(Ne−1)/2φ
α
(Ne+1)/2〉 (5.39)

The lack of superscript on the left of �UOS hints at the fact that this determinant
is not an eigenfunction of S2 (even though it is an eigenfunction of Sz with MS =
1
2 ). This can be generalized to any unrestricted determinant [4]. As a consequence,
unrestricted determinants are not pure spin states, but contain contaminations of
higher spin multiplicities. Nevertheless, unrestricted determinants are usually taken
as first approximations to pure spin states. In a KS DFT calculation employing the
unrestricted formalism, two different sets of KS equations need to be solved, one for
the φα

i (r) and one for the φ
β
i (r) spatial orbitals.

One can always define an electron density for α electrons and an electron density
for β electrons that summed give the total density. For an unrestricted determinant:

n(r) = nα(r) + nβ(r) =
Nα
e∑

i=1

| φα
i (r) |2 +

Nβ
e∑

i=1

| φ
β
i (r) |2 (5.40)

Usually, one defines also a spin density ns(r) as given by the difference between the
α and β densities:

ns(r) = nα(r) − nβ(r) =
Nα
e∑

i=1

| φα
i (r) |2 −

Nβ
e∑

i=1

| φ
β
i (r) |2 (5.41)

Exchange-correlation functionals can be formulated in terms of nα(r) and nβ(r).
For open-shell systems, often (but not always, as we will see in Sect. 5.5), DFT
calculations employ spin-polarized functionals. The expressions “unrestricted” and
“spin-polarized” are usually used interchangeably to indicate DFT calculations with
unrestricted determinants.

5.4 The Projector Augmented Wave Method

The PAW method has already been briefly mentioned in Sect. 5.2, where it has been
presented as a strategy to solve the KS DFT equations with a computational cost
similar to that of PP methods, but that, contrary to the latter, formally preserves all
aspects of the wave function, and electron density, in the core regions. One of the
difficulties connected with electronic structure calculations, in general, is to account
for the rapid oscillations exhibited by the orbitals near the nuclei. We will see how
the PAW approach bypasses this problem by introducing smooth auxiliary orbitals
as variational parameters in the SCF minimization procedure; and by doing that in
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a way that allows to reconstruct the full KS orbitals with the correct nodal structure
near the nuclei. Before delving into the practical aspects of PAW calculations, we
shall shortly review the formalism underlying the method starting from its basic
principles. For more exhaustive descriptions of the methodology, Refs. [11, 12] are
ideal starting points.

5.4.1 Pseudo Orbitals

In what follows, the PAW theory is presented using exclusively spatial orbitals, as
the spin part of the KS spin orbitals are, in practice, not amenable to numerical
computation and can be integrated out at any time [4].

We seek a linear transformation T that can map the full KS orbitals φi (r) into
smooth auxiliary orbitals φ̃i (r):

|φi 〉 = T |φ̃i 〉 (5.42)

The papers where the method was first presented (Refs. [11, 12]), used the terminol-
ogy “wave function” to indicate both the |φi 〉 and the |φ̃i 〉 one-particle functions. This
nomenclature has also been by the GPAW program [23, 24]. Here, to be consistent
with the terminology used in Sect. 5.2, and avoid confusion with the many-particle
electronic wave function, we will continue to call them “orbitals”. We also drop the
term “all-electron” to indicate the KS orbitals |φi 〉, which in the referenced articles
is used to distinguish them from the |φ̃i 〉. However, the auxiliary orbitals |φ̃i 〉, and all
other quantities directly connected to them, will be given the attribute of “pseudo”,
as in the original formulation.

We require that the operator T transforms the pseudo orbitals only within aug-
mentation spheres surrounding the nuclei, such that we can write it as the identity
plus some local atom-centered operators T α:

T = 1 +
Nn∑

α=1

T α (5.43)

This form of the transformation operator implies that the pseudo orbitals are equal to
the KS orbitals outside the augmentation spheres. The equivalence is justified by the
fact that between atoms, in the bonding regions, the KS orbitals are already smooth,
and, therefore, there is no need to apply the transformation there.

Then, we expand the KS orbitals inside each augmentation region α in terms of
a complete basis set of partial waves |ϕα

μ〉:

|φi 〉 =
∞∑

μ

cα
iμ|ϕα

μ〉, within | r − Rα |< rα
c (5.44)
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where rα
c is the cutoff radius defining the augmentation region of atom α, and the

expansion coefficients cα
iμ are to be determined. Next, we associate to each partial

wave a smooth counterpart |ϕ̃α
μ〉, termed pseudo partial wave. The |ϕ̃α

μ〉 for atom α
are chosen such that they are related to the partial waves |ϕα

μ〉 through the transfor-
mation T α:

|ϕα
μ〉 = (1 + T α) |ϕ̃α

μ〉
⇒ T α|ϕ̃α

μ〉 = |ϕα
μ〉 − |ϕ̃α

μ〉 (5.45)

Since T α operates inside the augmentation regions only, we have that:

|ϕα
μ〉 = |ϕ̃α

μ〉, for | r − Rα |> rα
c (5.46)

We, then, take the |ϕ̃α
μ〉 as basis in which to expand the pseudo orbitals inside the

augmentation regions:

|φ̃i 〉 =
∞∑

μ

cα
iμ|ϕ̃α

μ〉, within | r − Rα |< rα
c (5.47)

Since:

|ϕα
μ〉 = T |ϕ̃α

μ〉 (5.48)

we see, by inserting the above expression for |ϕα
μ〉 into Eq. (5.44) and comparing

the result with Eq. (5.42), that the coefficients of the expansions in Eqs. (5.47) and
(5.44) must be identical. In order to make the transformation operator T linear, these
expansion coefficients are taken as the scalar products of the pseudo orbitals |φ̃i 〉with
some localized functions | p̃α

μ〉, called projector functions:

cα
iμ = 〈 p̃α

μ |φ̃i 〉 (5.49)

By inserting Eq. (5.49) into Eq. (5.47), we obtain the following expression for the
pseudo orbitals:

|φ̃i 〉 =
∞∑

μ

|ϕ̃α
μ〉〈 p̃α

μ |φ̃i 〉, within | r − Rα |< rα
c (5.50)

which implies the identity relation:

∞∑

μ

|ϕ̃α
μ〉〈 p̃α

μ | = 1, within | r − Rα |< rα
c (5.51)
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and that:

〈 p̃α
μ |ϕ̃α

ν 〉 = δμν, within | r − Rα |< rα
c (5.52)

To derive an expression for T , we first operate with T α on |φ̃i 〉:

T α|φ̃i 〉 =
∞∑

μ

T α|ϕ̃α
μ〉〈 p̃α

μ |φ̃i 〉 =
∞∑

μ

(|ϕα
μ〉 − |ϕ̃α

μ〉) 〈 p̃α
μ |φ̃i 〉 (5.53)

where the first equality comes from using Eq. (5.50), and the second equality from
the second line of Eq. (5.45). Equation (5.53) gives the following definition of T α:

T α =
∞∑

μ

(|ϕα
μ〉 − |ϕ̃α

μ〉) 〈 p̃α
μ | (5.54)

Finally, T is obtained by inserting Eq. (5.54) into Eq. (5.42):

T = 1 +
Nn∑

α=1

∞∑

μ

(|ϕα
μ〉 − |ϕ̃α

μ〉) 〈 p̃α
μ | (5.55)

With the definition of T , we can express the KS orbitals in terms of pseudo orbitals
and the partial wave expansions. From Eqs. (5.42) and (5.55):

|φi 〉 = |φ̃i 〉 +
Nn∑

α=1

∞∑

μ

(|ϕα
μ〉 − |ϕ̃α

μ〉) 〈 p̃α
μ |φ̃i 〉

= |φ̃i 〉 +
Nn∑

α=1

(
|φα

i 〉 − |φ̃α
i 〉
)

(5.56)

where we have defined |φα
i 〉 and |φ̃α

i 〉 as the atom-centered expansions:

|φα
i 〉 =

∞∑

μ

|ϕα
μ〉〈 p̃α

μ |φ̃i 〉 (5.57)

|φ̃α
i 〉 =

∞∑

μ

|ϕ̃α
μ〉〈 p̃α

μ |φ̃i 〉 (5.58)

From an examination of Eq. (5.56) it should be clear that (i) outside the augmentation
regions, due to |ϕα

μ〉 = |ϕ̃α
μ〉, the original KS orbitals are equal to the pseudo orbitals
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Fig. 5.2 Examples of pseudo (green dashed lines) and KS orbitals (red lines) of a CO molecule
obtained from a single-point PAW calculation of the gas-phas ground-state molecule using GPAW
with an LDA functional. The plots show the values of the orbitals along the z axis, which coincides
with the axis of the molecule. Note how, in the outer regions and in between the two atoms, the
KS orbitals match their pseudo orbital counterparts; while, close to the nuclei, the pseudo orbitals
replace the cusps and oscillating features with smooth continuations

(|φi 〉 = |φ̃i 〉), and (ii) within the augmentation regions the original KS orbitals are
equal to the expansions |φα

i 〉 (Eq. (5.57)), because the pseudo orbitals are equal to
the expansions |φ̃α

i 〉 (Eq. (5.58)) as a consequence of Eq. (5.50).
The important achievement that we have attained is a mapping of the full KS

problem into one where the variational parameters can be smooth auxiliary func-
tions (the pseudo orbitals φ̃i (r)), which are computationally convenient to handle:
convergence of a plane-wave or localized atomic orbital basis set is fast for systems
with many electrons, and, when using grid-based techniques, as in GPAW (see para-
graph below), they can be efficiently represented on coarse grids. On the other hand,
the oscillatory nodal structure near the nuclei can be exactly recovered, as Eq. (5.56)
suggests. Naturally, the mapping implies that all energy functionals of Eq. (5.22),
and the KS Hamiltonian hKS (Eqs. (5.28)–(5.31)) need to be transformed accord-
ingly for the KS procedure to lead to the correct solution. This will be the topic of
the next paragraphs. Examples of pseudo orbitals are given in Fig. 5.2 for a σ and a
π orbitals of carbon monoxide (CO), as computed from the isolated ground state of
the molecule using GPAW with an LDA functional.

For the PAWmethod to be exact the basis sets of partial waves |ϕα
μ〉 and |ϕ̃α

μ〉, and
projectors | p̃α

μ〉, need to be complete. For practical calculations, however, one trun-
cates the expansions. Usually, one or two partial waves and corresponding projectors
per atomic site and angular momentum are sufficient to achieve convergence [12,
23]. The partial waves are obtained from solving the KS equations for the isolated
spherically symmetric atoms, often taking into account scalar-relativistic effects [12,
24]. More information on the construction of partial waves and projector functions
can be found in Refs. [12, 23]. A second approximation that is usually introduced
in practical PAW calculations, is the frozen core approximation. That is to say, only
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partial waves of valence electrons are included in the expansions of the pseudo and
KS orbitals (Eqs. (5.44) and (5.47)), while the orbitals for the core states are fixed to
the core partial waves of the isolated atoms (|ϕα,core

μ 〉 and |ϕ̃α,core
μ 〉).

5.4.2 PAW Formulation of the Electron Density

Here, we confine ourselves to reporting the expressions used to compute the electron
density within the PAWmethod. The formulas take into account the approximations
that we have introduced above, namely the finite truncation of the partial wave expan-
sions and the frozen-core approximation. Contributions from the core electrons will
be separated out to make this clear. For the full derivations see Refs. [11, 12].

The electron density is given in terms of a pseudo density ñ(r), which is smooth
everywhere in space, and atom-centered expansions. For Nn nuclei and Norb spatial
orbitals with occupation numbers fi :

n(r) =
Norb∑

i=1

fi | φi (r) |2= ñ(r) +
Nn∑

α=1

(
nα(r) − ñα(r)

)
(5.59)

The pseudo density is obtained from the pseudo orbitals describing Neval valence
electrons and a smooth pseudo core density ñcore(r):

ñ(r) =
Norb∑

i=1

fi | φ̃i (r) |2 +ñcore(r) (5.60)

The atom-centered corrections nα(r) and ñα(r) appearing in Eq. (5.59) are evaluated,
for each atom α, from the partial waves and projector functions as:

nα(r) =
∑

μ,ν

Dα
μνϕμ(r)ϕν(r) + nα

core(r) (5.61)

ñα(r) =
∑

μ,ν

Dα
μνϕ̃μ(r)ϕ̃ν(r) + ñα

core(r) (5.62)

where Dα
μν are elements of an atomic density matrix, defined as:

Dα
μν =

Norb∑

i=1

fi c
α∗
iμ c

α
iν =

Norb∑

i=1

fi 〈φ̃i | p̃α
μ〉〈 p̃α

ν |φ̃i 〉 (5.63)

and nα
core(r) and ñα

core(r) are the atomic core electron density and its smooth coun-
terpart. The PAW transformation ensures that each term nα(r) − ñα(r) in Eq. (5.59)
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is non vanishing only inside the augmentation spheres around the nuclei, such that
outside them n(r) = ñ(r).

5.4.3 The PAW Energy Functional

In order to derive the set of equations that in the PAW method replace the standard
KS equations (Eq. (5.32)), which is the ultimate goal of this section, we first have to
find the expression of the PAW total energy functional.

Just as for the orbitals (Eq. (5.56)) and the electron density (Eq. (5.56)), also
the energy functional can be decomposed into a “smooth” part Ẽ plus some atomic
corrections:

EPAW = Ẽ +
Nn∑

α=1

(
Eα − Ẽα

)
(5.64)

To see how the above decomposition arises, we need to consider the effects of the
PAWtransformationon each energy functional termappearing inEq. (5.22). For some
of them, like the kinetic energy functional, we will simply give the final expressions.
The terms that arise from Coulomb interactions, on the other hand, will be explicitly
derived. This gives us the opportunity to introduce concepts that will be also used in
deriving the equations that are at the heart of the QM/MM electrostatic embedding
scheme presented in Chap.6.

The following expression is used in the PAWmethod to evaluate the kinetic energy
functional T s

e [n] [11, 12, 23]:

T s
e [n] = T s

e

[
ñ
]+

Nn∑

α=1

(
T sα
e − T̃ sα

e

)
(5.65)

where each term is given by:

T s
e

[
ñ
] =

Norb∑

i=1

fi 〈φ̃i | − 1

2
∇2
i |φ̃i 〉 (5.66)

T sα
e =

∑

μ,ν

Dα
μν〈ϕα

μ| − 1

2
∇2
i |ϕα

ν 〉 +
Nα
core∑

μ=1

〈ϕα,core
μ | − 1

2
∇2
i |ϕα,core

μ 〉 (5.67)

T̃ sα
e =

∑

μ,ν

Dα
μν〈ϕ̃α

μ| − 1

2
∇2
i |ϕ̃α

ν 〉 (5.68)

with Nα
core the number of core states included in the atomic reference calculation for

atom α.
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For LDA and GGA exchange-correlation functionals, the following general
expression applies [11, 12, 23]:

Exc [n] = Exc
[
ñ
]+

Nn∑

α=1

(
Exc[nα] − Exc

[
ñα
] )

= Exc
[
ñ
]+

Nn∑

α=1

(
Eα
xc − Ẽα

xc

)
(5.69)

Again, the atomic corrections depend on the density matrix elements Dα
μν through

Eqs. (5.61) and (5.62).
The way Coulomb electrostatic interactions are handled in the PAW approach is

worth more careful consideration. First, a total negative nuclear charge density is
defined as the sum of point charge densities Zα(r) of the nuclei, each given by a
delta function operating at the nuclear site Rα times the (positive) nuclear charge
Zα:

Z(r) =
Nn∑

α=1

Zα(r) = −
Nn∑

α=1

δ(r − Rα)Zα (5.70)

With this definition of the nuclear density, we can express a total charge density
(electron density plus nuclear charge density), which we call ρ(r), as:

ρ(r) = n(r) + Z(r) = n(r) +
Nn∑

α=1

Zα(r) (5.71)

Since n(r) is positive while Z(r) has been defined as a negative quantity, ρ(r) is
a sign-inverted charge density, which gives 0 when integrated over all space for a
neutral system. Furthermore, we can write the total Coulomb energy, comprising the
attraction between electrons and nuclei, and the electron-electron and internuclear
repulsion, as the following double integral:

E ′
coul [n] = 1

2

∫ ∫
ρ(r)ρ(r′)
| r − r′ | drdr

′ (5.72)

where the prime for E ′
coul [n] indicates that E

′
coul [n], as expressed above, includes the

infinite self interaction energy between nuclear point charges. Obviously, this term
needs to be subtracted out. To avoid excessive notation at this stage, however, we shall
apply the correction at a later step. That E ′

coul [n] is the total Coulomb interaction
energy plus the self interaction of the nuclei can be seen by inserting the definition
of the total charge density (Eq. (5.71)) into Eq. (5.72):
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E ′
coul [n] = 1

2

∫ ∫
ρ(r)ρ(r′)
| r − r′ | drdr

′

= 1

2

∫ ∫

(
n(r) −

Nn∑
α=1

δ(r − Rα)Zα

)(
n(r′) −

Nn∑

β=1
δ(r′ − Rβ)Zβ

)

| r − r′ | drdr′

= −
Nn∑

α=1

∫ Zαn(r)
| Rα − r |dr + 1

2

∫ ∫
n(r)n(r′)
| r − r′ | drdr

′ + 1

2

Nn∑

α=1

Nn∑

β=1

ZαZβ

| Rα − Rβ |
= Vne [n] + J [n] + V ′

nn (5.73)

The first term on the third line of Eq. (5.73) is the classical attraction between
electrons and nuclei, as in Eq. (5.11), the second term is exactly the electron-electron
repulsion as defined in Eq. (5.12), and V ′

nn is the internuclear repulsion including the
self-interaction error.

By inserting the PAW formulation of the electron density (Eq. (5.59)) into Eq.
(5.72) and grouping terms that involve a summation over nuclei we obtain:

E ′
coul [n] = 1

2

((
ñ +

Nn∑

α=1

(
nα + Zα − ñα

)))
(5.74)

Here and in what follows, we have introduced the following notation for double
integrals:

( f | f ′) =
∫ ∫

f (r) f ′(r′)
| r − r′ | drdr′ (5.75)

( f | f ) = (( f )) (5.76)

The expression in Eq. (5.74) can be simplified by introducing a new set of smooth
atom-centered functions Z̃α(r) localized inside the augmentation spheres:

E ′
coul [n] = 1

2

((
ñ +

Nn∑

α=1

Z̃α +
Nn∑

α=1

(
nα + Zα − ñα − Z̃α

)))
(5.77)

and requiring that, by construction of the Z̃α(r), the densities nα(r) + Zα(r) −
ñα(r) − Z̃α(r), which vanish outside the augmentation regions, have zero electro-
static multipole moments. As a result, none of the augmentation regions interact
electrostatically with the others and the total Coulomb interaction reduces to:

E ′
coul [n] = 1

2

((
ñ +

Nn∑

α=1

Z̃α

))
+ 1

2

Nn∑

α=1

[
((nα + Zα)) −

((
ñα + Z̃α

))]
(5.78)
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where we begin to recognize the familiar separation into a “smooth” part and atom-
centered corrections. The functions Z̃α(r) are usually called compensation charges.
For Eq. (5.78) to be exact, the compensation charges should be complete expansions
in multipole moments. In GPAW, for practical applications, the expansions are trun-
cated up to the quadrupole moment [25]. The reader interested in the more technical
details of how exactly the compensation charges are constructed is referred to Refs.
[11, 12, 23]. Here, it will be sufficient to say that they are also functions of the atomic
density matrix elements (Eq. (5.63)).

At this point, we can easily get rid of the self-interaction of the nuclear point

charges by subtracting a term
1

2

Nn∑

α=1

((Zα)):

Ecoul [n] = E ′
coul [n] − 1

2

Nn∑

α=1

((Zα))

= 1

2

((
ñ +

Nn∑

α=1

Z̃α

))
+ 1

2

Nn∑

α=1

[
((nα)) + 2 (nα|Zα) −

((
ñα + Z̃α

))]

= 1

2
((ρ̃)) + 1

2

Nn∑

α=1

[
((nα)) + 2 (nα|Zα) −

((
ñα + Z̃α

))]

= Ecoul
[
ρ̃
]+

Nn∑

α=1

(
Eα
coul + Ẽα

coul

)
(5.79)

where, on the last line, we have defined Ecoul
[
ρ̃
]
as the (true) Coulomb energy

functional of a pseudo total charge density ρ̃(r) given by ρ̃(r) = ñ(r) +
Nn∑

α=1
Z̃α(r).

The last equality in Eq. (5.79) defines the three basic components of the Coulomb
energy functional. Using the standard notation for the double integrals:

Ecoul
[
ρ̃
] = 1

2

∫ ∫
ρ̃(r)ρ̃(r′)
| r − r′ | drdr

′ (5.80)

Eα
coul = 1

2

Nn∑

α=1

[∫ ∫
nα(r)nα(r′)
| r − r′ | drdr′ + 2

∫ ∫
nα(r)Zα(r′)

| r − r′ | drdr′
]

(5.81)

Ẽα
coul = 1

2

∫ ∫
(
ñα(r) + Z̃α(r)

) (
ñα(r′) + Z̃α(r′)

)

| r − r′ | drdr′ (5.82)

Having rewritten all the terms appearing in Eq. (5.22) using the PAW formalism, we
can, finally, collect them to obtain the expression of the PAW total energy functional:
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EPAW = T s
e

[
ñ
]+ Ecoul

[
ρ̃
]+ Exc

[
ñ
]

+
Nn∑

α=1

(
T sα
e − T̃ sα

e + Eα
coul − Ẽα

coul + Eα
xc − Ẽα

xc

)
(5.83)

By comparing Eq. (5.83) to Eq. (5.64), provided at the beginning of this paragraph,
we can now see that:

Ẽ = T s
e

[
ñ
]+ Ecoul

[
ρ̃
]+ Exc

[
ñ
]

(5.84)

and:

Eα = T sα
e + Eα

coul + Eα
xc (5.85)

Ẽα = T̃ sα
e + Ẽα

coul + Ẽα
xc (5.86)

5.4.4 The PAW Hamiltonian

With the expression of the total PAW energy functional at hand we can obtained a
set of transformed KS equations by invoking the variational principle. We need to
minimize EPAW with respect to the pseudo orbitals under the constraint that the KS
orbitals are orthonormal (the pseudoorbitalsdonot, actually, need to beorthonormal):

∫
φ∗
i (r)φ j (r)dr =

∫
φ̃∗
i (r)T †T φ̃ j (r)dr =

∫
φ̃∗
i (r)Oφ̃ j (r)dr = δi j (5.87)

where O = T †T is an overlap operator. By applying, as usual, the method of
Lagrange multipliers:

δ

δφ̃∗
i (r)

⎡

⎣EPAW −
Norb∑

i=1

Norb∑

j=1

ε′
i j

(∫
φ̃∗
i (r)Oφ̃ j (r)dr − δi j

)⎤

⎦ = 0 (5.88)

we obtain, after unitary transformation to diagonalize the matrix of Lagrange multi-
pliers, as done also in deriving Eq. (5.32), the following transformed KS equations:

h̃KSφ̃i (r) = εi Oφ̃i (r) (5.89)

where h̃KS = T †hKST is the transformed KS Hamiltonian, whose explicit form can
be derived from the relation:

fi h̃KSφ̃i (r) = δEPAW

δφ̃∗
i (r)

(5.90)
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The functional derivative
δEPAW

δφ̃∗
i (r)

is evaluated using the definition of the total energy

functional EPAW contained in Eqs. (5.64) and (5.84), the expressions for its compo-
nents T s

e

[
ñ
]
(Eq. (5.66)) and Ecoul

[
ρ̃
]
(Eq. (5.80)), and the definition of Dα

μν in Eq.

(5.63). We should also keep in mind that Ecoul
[
ρ̃
]
and

[
Eα − Ẽα

]
are functions of

the functionals Dα
μν (Ecoul

[
ρ̃
]
through the compensation charges). Then, by applying

the chain rule for functional derivatives and derivatives of functions of functionals1:

δEPAW

δφ̃∗
i (r)

= δ Ẽ

δφ̃∗
i (r)

+
Nn∑

α=1

δ
(
Eα − Ẽα

)

δφ̃∗
i (r)

= δT s
e

[
ñ
]

δφ̃∗
i (r)

+
∫ [

δEcoul
[
ρ̃
]

δñ(r′)
+ δExc

[
ñ
]

δñ(r′)

]
δñ(r′)
δφ̃∗

i (r)
dr′

+
Nn∑

α=1

∑

μ,ν

⎧
⎨

⎩
∂Ecoul

[
ρ̃
]

∂Dα
μν

+
∂
[
Eα − Ẽα

]

∂Dα
μν

⎫
⎬

⎭
δDα

μν

δφ̃∗
i (r)

= δT s
e

[
ñ
]

δφ̃∗
i (r)

+
∫ [∫

δEcoul
[
ρ̃
]

δρ̃(r′′)
δρ(r′′)
δñ(r′)

dr′′ + δExc
[
ñ
]

δñ(r′)

]
δñ(r′)
δφ̃∗

i (r)
dr′

+
Nn∑

α=1

∑

μ,ν

⎧
⎨

⎩

∫
δEcoul

[
ρ̃
]

δρ̃(r)
∂ρ̃(r)
∂Dα

μν

dr +
∂
[
Eα − Ẽα

]

∂Dα
μν

⎫
⎬

⎭
δDα

μν

δφ̃∗
i (r)

= δT s
e

[
ñ
]

δφ̃∗
i (r)

+
[

δEcoul
[
ρ̃
]

δρ̃(r)
+ δExc

[
ñ
]

δñ(r)

]
φ̃i (r)

+
Nn∑

α=1

∑

μ,ν

⎧
⎨

⎩

∫
δEcoul

[
ρ̃
]

δρ̃(r)
∂ρ̃(r)
∂Dα

μν

dr +
∂
[
Eα − Ẽα

]

∂Dα
μν

⎫
⎬

⎭
δDα

μν

δφ̃∗
i (r)

= fi

[
−1

2
∇2
i + υ̃coul(r) + υ̃xc(r)

]
φ̃i (r)

+
Nn∑

α=1

∑

μ,ν

⎧
⎨

⎩

∫
υ̃coul(r)

∂ρ̃(r)
∂Dα

μν

dr +
∂
[
Eα − Ẽα

]

∂Dα
μν

⎫
⎬

⎭ fi p̃
α
μ(r)〈 p̃α

ν |φ̃i 〉

= fi

[
−1

2
∇2
i + υ̃coul(r) + υ̃xc(r)

]
φ̃i (r) +

Nn∑

α=1

∑

μ,ν

fi p̃
α
μ(r)�hα

μν〈 p̃α
ν |φ̃i 〉

(5.91)

1See Appendix A of Ref. [3] for an overview of functional derivatives. In particular, the equations
that are used here are Eqs. (A.24), (A.33), (A.34) of Ref. [3].
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where, in going from line three to line four, we have further used that
δρ̃(r′′)
δñ(r′)

=

δ(r′′ − r′) and
δñ(r′)
δφ̃∗

i (r)
= δ(r′ − r)φ̃i (r). The Coulomb potential υ̃coul(r), and the xc

potential υ̃xc(r) are defined as:

υ̃coul(r) = δEcoul
[
ρ̃
]

δρ̃(r)
(5.92)

υ̃xc(r) = δExc
[
ñ
]

δñ(r)
(5.93)

and:

�hα
μν =

∫
υ̃coul(r)

∂ρ̃(r)
∂Dα

μν

d(r) +
∂
[
Eα − Ẽα

]

∂Dα
μν

(5.94)

By comparing Eq. (5.90) with the last line of Eq. (5.91), we obtain the explicit
expression of the transformed KS Hamiltonian h̃KS:

h̃KS = −1

2
∇2
i + υ̃coul(r) + υ̃xc(r) +

Nn∑

α=1

∑

μ,ν

| p̃α
μ〉�hα

μν〈 p̃α
ν | (5.95)

h̃KS is composed of three parts. The first part (first term on the right hand side of Eq.
(5.95)) is a the kinetic energy operator. The second part (υ̃coul(r) + υ̃xc(r)) represents
an effective potential, and is a functional of only smooth pseudo densities. The third
part (last term on the right hand side of Eq. (5.95)) is a correction term. As implied
by Eq. (5.94), this correction is not just a constant potential, but adjusts together with
the effective potential during the SCF steps.

5.4.5 GPAW: A Grid-Based Implementation of PAW

Inspired by already existing electronic structure codes based on pseudo-potentials,
early implementations of the PAWmethod employed planewaves as basis inwhich to
expand the pseudo orbitals [11, 12]. The GPAWprogram [23, 24] pursues a different
strategy by representing orbitals, densities and potentials on real-space grids. The
advantage of using real-space grids is twofold: first of all, systematic convergence
of the accuracy of the representation is ensured by increasing the number of grid
points per fixed volume (which is to say reducing the grid spacing); and, secondly,
parallelization strategies based on efficient domain decomposition of the real-space
grid, within the simulation box, can be adopted. Thanks to the latter, in particular,
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simulation times for large scale calculations can be significantly reduced when using
parallel supercomputing systems [24, 26]. Moreover, GPAW takes advantage of the
property of the pseudo orbitals and pseudo densities of being smooth everywhere in
space, by representing them on relatively coarse grids. All atom-centered localized
functions, such as the atomic partial waves, the projector functions and the core
densities, are evaluated, instead, ahead of the actual calculations and stored in atomic
setups. This allows to keep the memory requirements low and to boost even more
the computational efficiency.

A representation of the electron density on a coarse real-space grid is particularly
well-suited for multiscale embedding schemes that explicitly compute electrostatic
interactions between the density of a solute and classical point change models rep-
resenting the solvent. In Chap.6, we will see how we have taken advantage of this
computational expediency of GPAW to develop a QM/MM electrostatic embedding
scheme [25] with only small added computational cost with respect to pure GPAW
calculations of the isolated QM solute. Nonetheless, the multiscale strategy does not
introduce approximations other than those already shared by standard implementa-
tions of QM/MM electrostatic embedding [25].

In GPAW all formulas to evaluate densities, potentials and energies are converted
into discretized forms. For example, the Coulomb energy of Eq. (5.80) is computed
as:

Ecoul
[
ρ̃
] = 1

2
Vg

∑

g

υ̃coul(rg)ρ̃(rg) (5.96)

where the summation is over points g of a uniform real-space grid, Vg is the volume
per grid point, and theCoulombpotential υ̃coul(rg) is obtainedby solving adiscretized
version of the Poisson equation ∇2υ̃coul(r) = −4πρ̃(r). In essence, all integrals and
derivatives are calculated using finite-difference methods. Iterative diagonalization
schemes are, on the other hand, required to solve the generalized eigenvalue problem
of Eq. (5.89).

In addition to the grid-based representation, linear combination of atomic orbitals
(LCAO) basis sets are also available in GPAW [27] for representing the pseudo
orbitals (when used, the densities and electrostatic interactions are still evaluated
on the grid). The disadvantage of using LCAO basis sets is that converge of the
accuracy, as in most LCAO-based electronic structure calculations [1, 24], cannot be
reached as systematically as when using grid-based representations. However, there
is an important advantage: the dimensionality of the problem when using LCAO
basis is reduced with respect to the grid-based representation. This means that the
memory requirements are even lower and that, for example, it is possible to solve
the KS equations using direct diagonalization procedures. As a result, convergence
of the SCF cycle is achieved more rapidly, and calculations with LCAO basis can be
much faster than using finite-difference methods, for large systems. The accuracy of
structural predictions of LCAO calculations in GPAW were found to be comparable
to that of pure grid-based calculations [27]. As we will see later, SCF solution of the
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KS equations represents themost computationally demanding part of direct QM/MM
BOMDsimulations. Since it is important to keep the computational cost at aminimum
in order to collect statistical data sufficient to reach unequivocal conclusions about
solution equilibrium and dynamical properties, all QM/MM BOMD simulations
performed in the present work made use of GPAW with LCAO basis sets.

A last aspect of the program that is worth mentioning here, is that, in contrast
to most electronic structure codes, which are based entirely on compiled languages
like Fortran or C [26], GPAW adopts a Python/C combined approach [26]. The most
computationally expensive operations, like matrix diagonalizations and operations
on the grid, are carried out in C, but most of the program (about 85–90% of it [28])is
actually written in Python.2 This is done without significant speed loss, through
extensive use of NumPy3 for handling large arrays and communicating with C parts.
Thanks to the high degree of modularity of object oriented programming in Python,
it is relatively easy for users to add additional features in the code, as we have done
for the �SCF implementation presented in Sect. 5.5.

5.5 Density Functional Theory for Excited States

The KS DFT formalism, as described in the previous sections, applies to electronic
ground states. Generalization to the energetically lowest excited state of each sym-
metry (for symmetry we intend both the spatial symmetry, given by the irreducible
representation of the point group, and the spin multiplicity of a state) is possible [29].
Strategies to solve the KS equations for single-determinant excited states variation-
ally will be the topic of this section.

In the original KS scheme, only the Ne lowest energy orbitals that can be obtained
from the eigenvalue problem of Eq. (5.27) are used to compute the (exact for a non-
interacting system) expectation value of the kinetic energy operator and the electron
density, according to Eqs. (5.20) and (5.21). Let us rewrite Eqs. (5.20) and (5.21)
using an arbitrary number of spatial orbitals Norb:

T s
e [n] =

Norb∑

i=1

fi 〈φi | − 1

2
∇2
i |φi 〉 (5.97)

n(r) =
Norb∑

i=1

fi | φi (r) |2 (5.98)

2https://www.python.org/.
3http://www.numpy.org/.

https://www.python.org/
http://www.numpy.org/
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In a ground-state calculation, one assigns the fi according to the aufbau principle.
Excited-state single determinants can be constructed by enforcing different occupa-
tions of theKS orbitals, through involvement of ground-state virtual (empty) orbitals.
Note that the occupation numbers need not to be integers, in principle, but just those
that guarantee the symmetry of the desired excited-state [29]. The KS equations are,
then, solved variationally for the set of orbitals with constrained occupations. The
procedure is known as �SCF [29, 30].

Originally, this term was used to indicate only computations of vertical transition
energies by the difference between the energies of variationally optimized single-
determinant excited and ground states, obtained at the same nuclear geometry. As
the range of applications of the method has widened, the expression “�SCF” is
now used to refer, more broadly, to any kind of DFT calculation that involves SCF
convergence of a system using constraints on the occupation numbers. These include
excited-state geometry optimizations [31], vibrational frequency calculations [32],
PES scans [33–36], and BOMD simulations [37].

�SCF has been successfully employed to describe single-electron excitations, i.e.
electronic excitations that, to a great extent, can be represented by the picture where
one electron is promoted from an occupied to an empty orbital of the ground state,
of a large variety of systems [38–44]. The performance of �SCF with respect to the
prediction of vertical excitation energies was found to be comparable [39, 40] or, in
some cases, even superior [38, 41] to that of time-dependent DFT (TDDFT), and the
results are often in agreement with experiments and more advanced multireference
wave function calculations [38, 42–44].

This success has prompted, in recent years, the development of practical solutions
[34, 36, 45] to some of the deficiencies of �SCF, which limit its applicability in
extended PES scans and BOMD simulations. Thus, for example, techniques like the
maximum overlap method (MOM) [45], which avoid variational collapse to a lower
state of the same symmetry during the SCF cycle, have been proposed, and find,
nowadays, application in geometry optimizations [32] and BOMD simulations [37].

The increasing popularity of �SCF might seem surprising, given that the method
lacks solid theoretical foundations, and, for this reason, its validity has been some-
times questioned [46]. Indeed, the Hohenberg-Kohn variational principle applies
only to ground states, and there is no universal functional for excited states [46].
However, we must bear in mind that even for the ground state the variational prin-
ciple is valid only when the exact functional is used [3]. Yet, ground-state DFT
calculations employ, in practice, approximate functionals. Moreover, Van Voorhis
et al. [40] have recently provided some theoretical justification to the use of �SCF,
by showing that the method has a precise meaning within TDDFT with the adiabatic
approximation.

�SCF is emerging as a cheap, yet accurate, alternative to TDDFT for structural
predictions and BOMD simulations of the excited states of large systems, for which
high-level multireference methods are not yet a viable choice. Preliminary investiga-
tions on small molecules [32, 36], organic dyes [34, 37] and even biological systems
[33] are encouraging. In particular, �SCF was found to reproduce correct structures
and PES topologies, even when the quality of excitation energies is inferior to that
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achieved by TDDFT [32] or higher-level methods [34]. Currently, there are no simi-
lar studies for transition metal complexes. One of the goals of the present work is to
contribute to the understanding of the performance of �SCF by assessing the ability
of the method to predict the structural dynamics of transition metal complexes.

Standard�SCFschemes basedonpromotionof a single electron fromanoccupied
orbitalφr (r)of the ground state to a virtual orbitalφs(r), calculate the electron density
of a system of Ne electrons as:

n(r) =
Ne∑

i=1

(1 − δri ) |φi (r) |2 +
Norb∑

j=Ne+1

δs j |φ j (r) |2 (5.99)

where δri and δsi are delta functions. We will use the notation |�s
r 〉 to indicate the

excited state single determinant corresponding to the density given by Eq. (5.99).

5.5.1 Ziegler’s Sum Method for Open-Shell Singlets

The lowest-lying singlet excited state of PtPOP is an open-shell singlet, since it
possesses two unpaired electrons with opposite spin. There is an intrinsic limitation
of the �SCF method, as illustrated until now, in treating open-shell systems as this
one.

The single-determinant configurations that, intuitively, would seem to be the nat-
ural choice for describing an open-shell singlet with two unpaired electrons within
�SCF, are represented schematically in Fig. 5.3. These single determinants, which
we have indicated as |�s

r 〉 and |�s
r 〉, are not, however, pure singlet states. They have

MS = 0, but are not eigenfunctions of S2 [2, 4]. The expectation value of S2 with
respect to either |�s

r 〉 or |�s
r 〉 is 1 [2], hence, the twowave functions can be considered

as a mixture of singlet and triplet states. By taking appropriate linear combinations
of |�s

r 〉 and |�s
r 〉 [2, 4], we can, however, construct a pure singlet:

|1�s
r 〉 = 1√

2

(|�s
r 〉 + |�s

r 〉
)

(5.100)

and a pure (MS = 0) triplet states:

|3�s
r 〉 = 1√

2

(|�s
r 〉 − |�s

r 〉
)

(5.101)

Thus, we see that the open-shell singlet is more correctly described by the dou-
ble determinant of Eq. (5.100). Obviously, �SCF cannot deal directly with |1�s

r 〉,
because of its double-determinant character. We follow, instead, an indirect path, and
combine Eqs. (5.100) and (5.101) to obtain an expression that relates |�s

r 〉 to both
|1�s

r 〉 and |3�s
r 〉:
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|�s
r 〉 = 1√

2

(|1�s
r 〉 + |3�s

r 〉
)

(5.102)

By taking the expectation value of the electronic Hamiltonian with respect to |�s
r 〉

as give by Eq. (5.102), and rearranging, we obtain:

〈�s
r |He|�s

r 〉 = 1

2

(〈1�s
r |He|1�s

r 〉 + 〈3�s
r |He|3�s

r 〉
)

⇒ 〈1�s
r |He|1�s

r 〉 = 2〈�s
r |He|�s

r 〉 − 〈3�s
r |He|3�s

r 〉 (5.103)

where the singlet energy is now given in terms of the energies of the mixed spin state
|�s

r 〉 and the MS = 0 triplet. This is the multiplet sum rule of Ziegler [30], which is
usually written as:

ES = 2EM − ET (5.104)

The procedure consists in finding EM and ET from separate SCF optimization of
single determinants. Since the MS = 0 triplet is not a single determinant, in practice,
ET is obtained from the MS = 1 triplet determinant |3�s

r 〉 in an unrestricted calcula-
tion. In principle, the MS = 1 and MS = 0 triplets are degenerate. However, due to
the approximate nature of the procedure, after the orbitals have relaxed in the SCF
minimization, this is not strictly valid any more, and the use of |3�s

r 〉 can be source
of error in the determination of ES.

Another inconvenience connected with the use of the sum rule, is that calculation
of the gradients of the pure singlet state can be cumbersome, because it requires SCF
convergence of two states, making geometry optimizations and BOMD simulations
computationally expensive. Therefore, in the present work, we adopted a different
strategy in the simulations of PtPOP in the S1 state. Following Refs. [34, 39, 47], we
computed the energy of the singlet open-shell from a single �SCF calculation of the
restricted determinant corresponding to |�s

r 〉 using the spin-unpolarized functional.
Although spin-unpolarized �SCF calculations of open-shell singlets lack a formal
theoretical foundation, their accuracy in estimating transition energies of transition
metal complexes has turned out to be superior, in some cases, to the approach based
on the sum rule [39]. This success was rationalized [39] on the basis of similarities
between the spin-unpolarized �SCF density and an ensemble density [48].

5.5.2 Gaussian Smearing �SCF

Open-shell singlets are not the only systems whose multi-determinant character pre-
vents application of the standard �SCF scheme exemplified by Eq. (5.99). Difficul-
ties arise also when dealing with excitations that involve two or more degenerate
orbitals.
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As an example, let us consider, again, the CO molecule. Figure5.4 shows the
qualitative molecular orbital (MO) diagram of the ground state of CO, including the
five highest occupied and three lowest unoccupied orbitals. The two lowest electronic
excitations have 5σ → 2π and 1π → 2π character, respectively. Therefore, they both
involve pairs of degenerate π orbitals. SCF convergence of a density obtained by
changing the occupation number of only one of the two degenerate π orbitals by ±1,
according to Eq. (5.99), would be problematic, if not impossible at all. An ad hoc
solution that is usually adopted in such cases, is to add (or remove) half electron to
(from) both of the two degenerate π orbitals [31, 49].

However, this “trick” is not optimal for PES scans or BOMD simulations. In fact,
the ordering of the orbital energies can change during the sampling, thus requiring a
different occupation scheme for each nuclear configuration. In other words, what we
need in order to perform PES calculations or BOMD simulations with�SCFwithout
running into convergence problems, is a practical tool that allows to “dynamically”
update the constraints on the occupation numbers.

Recently, Maurer et al. [34] have employed a modification of the standard �SCF
constraints in �SCF PES calculations on azobenzene. The ordinary, discrete form
of the �SCF constraints was replaced with Gaussian functions of the energies of
the KS orbitals centered at the target orbitals (φr (r) and φs(r) in Eq. (5.99)). Such
Gaussian smeared constraints affect all orbitals that lie close in energy to φr (r) and

Fig. 5.3 Schematic
representation of two
open-shell single
determinants with mixed
spin symmetry



5.5 Density Functional Theory for Excited States 59

Fig. 5.4 Qualitative MO
diagram of the CO molecule
in the ground electronic state
(X1�+)

φs(r), ensuring stable convergence of the densitywhen state degeneracies are present,
while avoiding smearing of the electrons for configurations in which the orbitals are
well separated. Themethod has been demonstrated to be able to deliver, when applied
to azobenzene using GGA functionals, PES topologies close to conical intersections
(CIs) of quality comparable to those obtained using higher level Coupled Cluster
Singles and Doubles calculations [34].

5.5.3 Implementing Gaussian Smearing �SCF in GPAW

The high density of states that characterizes transitionmetal complexes can be source
of convergence issues in extensive�SCF excited-stateQM/MMBOMDsimulations.
�SCF with Gaussian smeared constraints seems a promising strategy to ease the
problem, due to its proven robustness and flexibility [34]. In order to investigate the
possibility of using this tool in excited-state QM/MMBOMD simulations of systems
like PtPOP, we have implemented it in a development branch of GPAW4 [50].

As in Eq. (5.99), let r and s be indices for an occupied and a virtual orbitals of
the ground state, respectively, and Norb the total number of orbitals included in the

4The implementation is currently available within the following repository on Gitlab: https://gitlab.
com/glevi/gpaw/tree/Dscf_gauss. The most relevant part of the code is included in Appendix A.

https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
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calculation. At each step of an SCF cycle, if Neval is the number of valence electrons
described explicitly in the GPAW calculation, then the occupation numbers of the i
lowest Neval orbitals, and those of the j orbitals from Neval + 1 to Norb, are calculated
as:

fi (εi ) = 1 − gr (εi ) (5.105)

f j (ε j ) = gs(ε j ) (5.106)

where gr (εi ) and gs(ε j ) are Gaussian functions of the energies of the KS orbitals:

gr (εi ) = 1

Nr
exp

{
− (εi − εr )

2

2σ2

}
(5.107)

gs(ε j ) = 1

Ns
exp

{
− (ε j − εs)

2

2σ2

}
(5.108)

The normalization factors for gr (εi ) and gs(ε j ) are found by requiring that:

Neval∑

i=1

gr (εi ) = 1 (5.109)

Norb∑

j=Neval+1

gs(ε j ) = 1 (5.110)

such to satisfy a condition for conservation of the total number of electrons:

Neval∑

i=1

(1 − gr (εi )) +
Norb∑

j=Neval+1

gs(ε j ) = Neval (5.111)

The parameter σ controls the extent of the smearing, and can in principle be varied
during the SCF cycle until satisfactory convergence is achieved.

Using the occupation numbers computed in this way, the modified form of the
pseudo electron density (Eq. (5.60)) becomes:

ñ(r) =
Neval∑

i=1

fi (εi ) | φ̃i (r) |2 +
Norb∑

j=Neval+1

f j (ε j ) | φ̃ j (r) |2 +ñcore(r) (5.112)

Also the elements Dα
μν of the atomic density matrix (Eq. (5.63)), and, therefore, all

the atom-centered densities dependent on them, are changed by the constraints:
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Dα
μν =

Neval∑

i=1

fi (εi )〈φ̃i | p̃α
μ〉〈 p̃α

ν |φ̃i 〉 +
Norb∑

j=Neval+1

f j (ε j )〈φ̃ j | p̃α
μ〉〈 p̃α

ν |φ̃ j 〉 (5.113)

Finally, the last expression that needs to be updated is that for the pseudo kinetic
energy functional T s

e

[
ñ
]
(Eq. (5.66)):

T s
e

[
ñ
] =

Neval∑

i=1

fi (εi )〈φ̃i | − 1

2
∇2
i |φ̃i 〉 +

Norb∑

j=Neval+1

f j (ε j )〈φ̃ j | − 1

2
∇2

j |φ̃ j 〉 (5.114)

All other expressions of the PAW formulation remain unaltered and the KS trans-
formed equations can be solved, within GPAW, in the exact same way as illustrated
in Sect. 5.4 for the ground state.

5.5.4 Testing the Implementation

We have tested our implementation of �SCF with Gaussian smeared constraints in
GPAWwith respect to the first two singlet and first two triplet excited states of the CO
molecule. In what follows, we focus, in particular, on the performances with respect
to structural predictions for the lowest-lying singlet states. The reason for this is that
we aim at confidently applying the method in QM/MM BOMD simulations of the
first singlet excited state of systems like PtPOP. Comparison of our calculations can
be done with respect to two sets of results, reported in the literature, obtained with
different implementations of�SCF [31, 36], as well as highly accurate experimental
data [51–53].

The first implementation we compare to is the linear expansion �SCF (le�SCF)
method of Gavnholt et al. [36]. le�SCF represents another variant of ordinary�SCF,
inwhich electrons are added to (or removed from) linear combinations ofKS orbitals.
The method was already implemented in GPAW, and is tailored to study excitations
of molecules adsorbed on metal surfaces. Handling degenerate π orbitals is not a
problem within this approach, because the orbitals involved in the excitation can be
taken as linear combinations of them [36], thus avoiding any convergence issue. We
note, however, that le�SCF is not suited for BOMD simulations, because it does
not comply with the Hellman-Feynman theorem [36], the theorem that allows to
compute analytical forces from the expectation value of the electronic Hamiltonian
[54]. This is not a problem with our Gaussian smearing �SCF implementation, as
we will see soon. Our second reference is a standard version of �SCF implemented
in the DFT code CONQUEST [31]. In this case, fixed fractional occupation numbers
were used for degenerate π orbitals when simulating the excited states of CO [31].

All calculations performedwith our implementation of�SCF inGPAWemployed
an LDA xc functional. This choice is motivated by the fact that both reference calcu-
lations [31, 36] used this approximation. Thewidth σ of the Gaussian functions (Eqs.
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Table 5.1 Ground to excited state vertical excitation energies for the lowest singlet and triplet
excited states of an isolated COmolecule computed at the equilibrium ground-state geometry using
our GPAW implementation of �SCF with Gaussian smeared constraints. A comparison is made
with calculated and experimental values retrieved from the literature. All values are in eV
State Transition Gaussian smearing �SCF GPAW le�SCF

GPAW
LDAa [36]

�SCF
CONQUEST
tzp/LDA [31]

Exp [51, 53]

LDAa tzp/LDA

A1� 5σ → 2π 7.82b, 7.34c 7.71b, 7.21c 7.84b 8.10b 8.51

a3� 6.09 5.93 6.09 5.26 6.32
1�–3� 1.73b, 1.25c 1.78b, 1.28c 1.75b 2.84b 2.19

D1� 1π → 2π 10.75b, 10.51c 10.65b, 10.41c 10.82b 10.90b 10.23

d3� 9.66 9.54 9.72 9.11 9.36
1�–3� 1.09b, 0.85c 1.11b, 0.87c 1.10b 1.79b 0.87
aGrid-based representation of the orbitals
bComputed using Ziegler’s sum rule [30]
cObtained from spin-unpolarized calculations

(5.107) and (5.108)) controlling the extent of the smearing of the �SCF constraints
was set to 0.01 eV. We have tested the implementation with both a pure grid-based
representation of the orbitals, and using an LCAO tzp basis set [27]. The grid spac-
ing was set to 0.18 Å, in any case. The grid-based calculations can be more closely
compared to those performed using GPAW and the le�SCF method, reported in
Ref. [36], since the latter were also grid-based. The LCAO representation was tested
because it can be used in QM/MM BOMD simulations of large systems in GPAW
with considerable saving of computational cost, and is, therefore, the method of
choice for such calculations.

Table5.1 reports the vertical excitation energies for the two lowest singlet and
triplet excited states of CO calculated at the ground-state optimized geometry by
our GPAW implementation of Gaussian smearing �SCF, and the corresponding
calculated and experimental reference values obtained from the literature [31, 36,
51, 53]. The singlet states (A1� and D1�) are multi-determinant open-shell singlets
(see paragraph Sect. 5.5.1). The calculations performed with le�SCF in Ref. [36]
and those realized with the program CONQUEST [31] used Ziegler’s sum method
to describe these states. For our tests, we report both the values obtained with the
sum rule and those from a single calculation using the spin-unpolarized functional.

Overall, there is a satisfactory agreement between the transition energies com-
puted with our implementation of Gaussian smearing �SCF and the values reported
for the other two implementations of �SCF [31, 36]. Not surprisingly, the closest
agreement is observed between the grid-based test calculations and the le�SCF cal-
culations in GPAW [36]. The LCAO tzp representation gives, in all cases, values
that are only slightly smaller than those obtained with the pure grid technique. Use
of the spin-unpolarized approximation for the singlets leads also to lower excitation
energies as compared to the calculations that employed the sum method.
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Table 5.2 Equilibrium bond lengths of CO in the ground state and lowest singlet and triplet excited
states obtained with our implementation of Gaussian smearing �SCF in GPAW, and comparison
with calculated and experimental values. All values are in Å

State Transition Gaussian smearing �SCF GPAW �SCF
CONQUEST
tzp/LDA [31]

Exp [53]

LDAa tzp/LDA

X1�+ Ground state 1.13 1.14 1.13 1.128

A1� 5σ → 2π 1.21b, 1.21c 1.23b, 1.23c 1.22b 1.235

a3� 1.20 1.22 1.21 1.206

D1� 1π → 2π 1.39b, 1.36c 1.41b, 1.39c 1.44b 1.399

d3� 1.36 1.39 1.38 1.370
aGrid-based representation of the orbitals
bComputed using Ziegler’s sum rule [30]
cObtained from spin-unpolarized calculations

The implementation of Gaussian smearing �SCF is intended to be used in exten-
sive sampling of nuclear configurations in excited-state BOMD simulations. It is
therefore important that the method is able to reproduce the shape of BO surfaces
with sufficient accuracy over a wide range of configurations, independently of the
absolute energy shift with respect to the ground state. Therefore, we have tested the
performance of the implementation with respect to prediction of the PESs of CO in
the lowest-lying excited states. A comparison can be made with experimental curves
and equilibrium geometries, which are available [52, 53] from the analysis of highly
resolved rovibrational spectra. As for reference calculations, we compare only to
PESs computed using the CONQUEST implementation of �SCF [31], since PESs
of CO obtained with le�SCF in GPAW have not been reported.

Table5.2 reports the equilibrium bond lengths of CO in the ground state and in
the two lowest singlet and triplet excited states. The equilibrium geometries were
obtained from geometry optimizations for all states except for the singlet excited
states when described with Ziegler’s sum rule; in these cases, the equilibrium bond
lengths were extracted from the positions of the energy minima of the respective
PESs, shown in Figs. 5.5(Right) and5.6(Left).

Differences between the bond lengths optimized with our implementation of
�SCF and the experimental values are all within 0.04 Å. In particular, for the A1�

excited states, despite differences between the computed excitation energies and
experimental data as large as 1.3 eV (see Table5.1), the equilibrium bond lengths
deviate by less than 0.025Å from experiments.More importantly, switching from the
grid-based to the LCAO representation does not result in significant variations. This
is in agreement with the finding that the LCAO description in GPAW tends to repro-
duce structural predictions of grid-based calculations very accurately, despite slightly
larger errors, on average, for energies [27]. Analogously, the accuracy with respect
to experiment does not seem to change substantially when using spin-unpolarized
calculations for the open-shell singlets instead of the sum method.
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Fig. 5.5 Adiabatic PESs of CO in the lowest-lying excited states computed using our implementa-
tion of �SCF with Gaussian smeared constraints in GPAW, and comparison with curves obtained
with another implementation of �SCF (digitalized from Ref. [31]) and determined from gas-phase
rovibrational spectra (Ref. [52]). A grid-based representation was used for the orbitals. (Left) First
two triplet states. (Right) First two singlet states calculated using Ziegler’s sum rule

Fig. 5.6 Adiabatic PESs of CO in the two lowest-lying singlet excited states calculated using our
GPAW implementation of �SCF with Gaussian smeared constraints. (Left) Comparison between
the grid-based and the LCAO tzp calculations when using Ziegler’s sum rule. (Right) Comparison
between Ziegler’s sum method and spin-unpolarized calculations when using a pure grid-based
representation of the KS orbitals

Figures5.5 and 5.6 show some of the adiabatic PESs of CO computed for the
lowest-lying excited states using the Guassian smearing �SCF implementation in
GPAW.
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Comparison with the experimental curves [52, 53] and those computed by Ter-
ranova et al. [31] using �SCF in CONQUEST, confirms that all tested methods are
able to reproduce the correct shapes of the PESs. In some cases, as for the T1 state
(see Fig. 5.5(Left)), the agreement with experiment of the GPAW �SCF calcula-
tions is improved with respect to �SCF in CONQUEST. Besides, for the singlet
open-shells (Fig. 5.5(Right)) the calculations are able to reproduce the shapes of the
experimental curves, but the position of the crossing between the S1 and S2 states is
predicted at too large bond lengths. The origin of this discrepancy lies mainly in the
error that affects the calculated energies for the D1� (diabatic) state, which are too
big compared to experiment. We should keep in mind, on the other hand, that the
�SCF implementation is targeted, for the scopes of the present work, to applications
on systems that do not exhibit strong deviation from the BO approximation. At this
stage, an accurate prediction of conical intersections is beyond the ambitions of the
method, especially for a diatomic molecule as CO, for which high-level multiref-
erence calculations are feasible. Figure5.6(Left) shows that grid-based and LCAO
calculations with a tzp basis set produce the same PESs for the singlet excited states,
save for some small differences in the absolute positions of the minima. Finally,
as seen from Fig. 5.6(Right), spin-unpolarized calculations are a valid alternative to
Ziegler’s sum method, as they virtually predict the same PESs (up to some constant
shift).

Given the above results, we are confident that our implementation of �SCF with
Gaussian smeared constraints in GPAW can be used for sufficiently reliable struc-
tural predictions in excited-state BOMD simulations. Moreover, the cost of QM/MM
BOMD simulations of open-shell singlets can be kept to a minimum by using an
LCAO representation of the orbitals, and the spin-unpolarized approximation, with-
out losing accuracy.

Before concluding this section, we take a closer look at the ability of �SCF with
Gaussian smeared constraints to deal with cases where state degeneracies would
otherwise undermine stable converge of the SCF solutions.

We consider the first singlet excited states of CO. We attempted to compute
the PESs in these states by replacing the smearing of the �SCF constraints with
fixed, discrete constraints of the orbital occupation numbers. For the degenerate
π orbitals the occupation numbers of the ground state were changed by ±0.5. The
calculations were performed in the spin-unpolarized approximation, and used a grid-
based representation of the orbitals. Figure5.7 shows the points on the PESs forwhich
the SCF cycle could converge without problems. For S2, almost all points could be
converged. However, for bond lengths between ∼1.4 and ∼1.7 Å, the electronic
density and orbitals of the S1 (adiabatic) state could not be converged. Notably,
convergence issues are experienced over a broad range of configurations, starting
with points relatively far from the point where the two electronic states are expected
to cross, around 1.6 Å.
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Fig. 5.7 Points on the PESs
of an isolated CO molecule
in the first singlet excited
states obtained when using
�SCF in GPAW with
discrete constrains on the
orbital occupation numbers

The example, although based on a simple diatomic system, is illustrative of the
challenges �SCF-QM/MM BOMD simulations in a lowest-lying singlet excited
state might face. Furthermore, one has to consider that the solvent can transiently
change the energy levels during the dynamics. As a result, state degeneracies could be
favoured even for configurations that would be energetically isolated in the gas-phase
system.

Smearing of the �SCF constraints is crucial in this regard. Figure5.8 (Bottom)
shows that by using aGaussian smearingwithσ = 0.01 eV, as done in all calculations
presented before, it is possible to fully reconstruct the PES in the S1 state, because
SCF convergence around the point of state crossing is no more a problem. The
top panels in Fig. 5.8 provide some insight into the issue and how it is overcome
by the method. Close to the minimum, the S1 state has 5σ → 2π character, the
5σ orbital has an occupation number of 1 and is relatively well separated from the
underlying, fully occupied 1π orbitals. For longer bond lengths, the energy difference
between the 5σ and 1π orbitals starts to decrease, until they are degenerate, around
1.6 Å. Gaussian smearing ensures stable convergence of the density at each point
by gradually changing the occupation numbers of the 5σ and 1π orbitals according
to their energy difference. At the point of crossing, the occupation numbers for all
three orbitals, the 5σ and two degenerate 1π orbitals, are basically the same. Note,
also, that due to the property of the Gaussian function of being peaked, it is not
until the energy difference between orbitals becomes smaller than∼0.04 eV, that the
smearing starts having an effect on the occupation numbers. At even longer bond
lengths, the energy of the 1π orbitals is higher than that of the 5σ orbital and the S1
state has 1π → 2π character.

Before, we havementioned that�SCF implementations that involve linear combi-
nation of orbitals do not satisfy theHellman-Feynman theorem [36], which is invoked
when computing analytical forces during geometry optimizations or BOMD simu-
lations. We have tested whether Gaussian smearing of the orbital occupation num-
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Fig. 5.8 (Bottom) Comparison between the points on the PES of CO in the S1 excited state obtained
using ordinary�SCF constrains (no smearing) and those calculated employing aGaussian smearing
of the constraints. (Middle) Occupation numbers of the five highest occupied KS orbitals along the
CO bond length. (Top) Energies of the five highest occupied KS orbitals along the CO bond length

bers in our �SCF implementation can affect the quality of the analytical gradients.
Figure5.9 shows plots of the analytical gradients as computed for different points
along the S1 PES. Clearly, the gradients follow the slope of the S1 curve, thus the
smearing does not seem to be a limitation for analytical calculation of nuclear forces.
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Fig. 5.9 Analytical
gradients computed by
GPAW at selected points on
the S1 PES of CO obtained
using �SCF with Gaussian
smeared constraints
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Chapter 6
The Quantum Mechanics/Molecular
Mechanics Method

Properly accounting for the influence of the solvent on the dynamics of transition
metal complexes in BOMD simulations necessitates the use of atomistic models
capable of describing explicit solute-solvent interactions. In fact, implicit solvation
models, which represent the solvent as a continuum, are not able to describe, for
example, specific transfer of excess vibrational energy from the solute to molecules
of the solvent or solvent-induced vibrational dephasing. While modelling a system
comprising a solute (in our case a transition metal complex) and an adequate number
of solventmoleculeswith an electronic structuremethod likeDFT can be impractical,
one realizes that the solvent is amenable to less accurate, but computationally more
expedient descriptions. As a matter of fact, processes like bond breaking/formation,
or electronic excitations, which entail large electronic rearrangements, are usually
confined within the solute (or within a solvation shell surrounding it, in the case,
for example, of solute-solvent charge transfer reactions). Hybrid QM/MM methods
divide the system of interest in a QM part, where the electronic structure is obtained
at quantum mechanical level, and an MM part, where the level of treatment is based
on molecular mechanics (MM), i.e. on classical potential functions. The idea is
schematically illustrated in Fig. 6.1. Comprehensive reviews on development and
application of QM/MM methodologies can be found, for example, in Refs. [2–4].

Different strategies exist for defining the boundary between the two regions
[2, 3], whose level of complexity depends mainly on whether the QM/MM borders
cut covalent bonds. Here, we will be concerned with nonadaptive QM/MM schemes,
in which the partitioning in the two subsystems is kept fixed during a simulation, and
the QM part includes the solute entirely.

Formally, the partition of the Hamiltonian and total energy of the full system, for
an additive QM/MM scheme, can be expressed as:

HTOT = HQM + HQM/MM + HMM (6.1)

ETOT = EQM + EQM/MM + EMM (6.2)

Parts of this chapter have been reproduced with permission fromRef. [1]. Copyright 2018American
Chemical Society.
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Fig. 6.1 Large systems that
need an explicit description,
like transition metal
complexes in solution, can be
simulated using a multiscale
QM/MM approach. The idea
behind it is to divide the
system into two parts (in our
case the solvated complex
and the solvent) based on the
different level of electronic
structure detail required by
each of them

HQM describes interactions between particles in theQM region,HMM describes inter-
actions between the classical MM particles, andHQM/MM is a coupling Hamiltonian
accounting for interactions between QM and MM particles.

We already know HQM, because we have encountered it before in this thesis. In
general, HQM has exactly the same form of the electronic Hamiltonian He of Eq.
(4.2).

Interactions between MM particles are represented with molecular mechanics
force fields, consisting in collections of classical pairwise additive potentials and
associated parameters. MM force fields usually describe a system of atoms with
point charges. There is not necessarily a one-to-one correspondence between MM
atoms and point charges, but charge sites can be displaced with respect to atomic
positions (in which case one can define “dummy” atoms carrying the charges) or
represent entire groups of atoms, as for example a methyl group. In addition there
can be Lennard-Jones (LJ) interaction sites, which account for dispersion and short-
range exchange repulsion (the van der Waals (vdW) interactions). For example, the
water TIP4P [5] model, which we employed in the QM/MM BOMD simulations of
PtPOP, consists of four interaction sites: two positive partial charges on the hydrogens
(qH = 0.52), one negative partial charge on a dummyatomMalong the bisector of the
HOH angle (qM = −2qH), and a LJ site on the oxygen. Flexible MM models define
also an internal energy in terms of bonded potential functions. In this thesis, we will
be dealing only with force fields, like TIP4P, describing rigid solvent molecules.
For such force fields, the MM Hamiltonian (corresponding to the MM energy) of a
system of NMM point charges and NLJ LJ interaction sites is given by:



6 The Quantum Mechanics/Molecular Mechanics Method 73

HMM = EMM =
NMM∑

k=1

NMM∑

l>k

qkql
|Rk − Rl |

+
NLJ∑

γ=1

NLJ∑

λ>γ

4εγλ

[(
σγλ

|Rγ − Rλ |
)12

−
(

σγλ

|Rγ − Rλ |
)6

]
(6.3)

where εγλ and σγλ are the LJ parameters.
The major challenge connected with hybrid QM/MM methods is represented by

the definition of the coupling Hamiltonian HQM/MM. Different levels of approxima-
tion can be adopted, ranging from mechanical embedding, in which neither of the
two subsystems polarizes the other, to fully polarizable embedding. Without going
into the details of each of them, in the following section, we will present only the
so-called QM/MM electrostatic embedding scheme [6], in which only the QM sub-
system is allowed to be polarized. The QM/MM electrostatic embedding scheme is
implemented in GPAW [7], and has been used in the present work.

6.1 QM/MM Electrostatic Embedding

The electrostatic embedding QM/MM interaction Hamiltonian is defined as:

Hel
QM/MM = −

NMM∑

k=1

Ne∑

i=1

qk
| ri − Rk | +

NMM∑

k=1

Nn∑

α=1

qkZα

| Rα − Rk | + Hnb
QM/MM

= Hcoul
QM/MM + Hnb

QM/MM (6.4)

where the first and second terms account for the Coulomb interactions between
electrons of the QM subsystem and MM charges, and between QM nuclei and
MM charges, respectively. Other non-bonded (nb) terms include vdW interactions
between QM and MM atoms, which are typically described with a LJ potential of
the same form of the last term in Eq. (6.3):

Hnb
QM/MM = Enb

QM/MM =
NLJ∑

γ=1

Nn∑

α=1

4εγα

[(
σγα

|Rα − Rγ |
)12

−
(

σγα

|Rα − Rγ |
)6

]

(6.5)
The Hamiltonian for the full system is:

Hel
TOT = HQM + Hel

QM/MM + HMM = He + Hel
QM/MM + HMM (6.6)

where He is given by Eq. (4.2). The total energy of the full system can be obtained
by solving the electronic Schrödinger equation (Eq. 4.3) for clamped QM nuclei and
MM particles, in the same way as we would do to get the energy of an isolated QM
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system. Except that now the Hamiltonian is the Hamiltonian of the full systemHel
TOT,

and the wave function describing the QM subsystem has an additional parametric
dependence on the positions of the MM particles. The first term on the right hand
side of Eq. (6.4) that is included in Hel

TOT is entirely analogous to the Vne term of
the electronic Hamiltonian He (see Eq. 4.2), accounting for the Coulomb attraction
between electrons and nuclei within the QM subsystem. That is to say, the external
electrostatic potential of the MM charges acts on the electrons of the QM part in the
same way as the “external” potential of the QM nuclei (Eq. 5.1) does. When solving
the electronic Schrödinger equation with the HamiltonianHel

TOT defined in Eq. (6.6),
using the variational principle, the wave function and the electron density of the QM
subsystem will self-consistently relax with respect to the external potential of the
MM charges. Thus, we see that, in the QM/MM electrostatic embedding scheme, the
MM atoms are allowed to polarize the electron density of the QM part. All terms that
do not have a dependence on the electronic coordinates of the QM subsystem, the
last two terms on the right hand side of Eq. (6.4) and HMM, are constants for given
QM and MM nuclear configurations, and, therefore, are similar to the nuclei-nuclei
repulsion term Vnn in Eq. (4.2).

The expression for the total energy of the full system, Eq. (6.2), becomes:

ETOT = EQM + Eel
QM/MM + EMM (6.7)

where the total electrostatic embeddingQM/MMinteraction energy Eel
QM/MM is given

by the Coulomb interaction energy between MM and QM subsystems plus other
QM/MM non-bonded (vdW) interactions:

Eel
QM/MM = Ecoul

QM/MM + Enb
QM/MM (6.8)

The QM/MM electrostatic embedding formalism, as illustrated until now, is general,
for any QM electronic structure method. Let us have a closer look at the particular
case in which the QM subsystem is described using KS DFT.

In this case, one finds the KS orbitals of the Slater determinant that minimizes the
energy of the full system by solving the KS equations (see Eq. 5.32) with a single
particle KS Hamiltonian hel

KS, which includes the external electrostatic potential of
the MM charges (υext(r)):

hel
KS = hKS + υext(r)

= −1

2
∇2
i + υ(r) + υH(r) + υxc(r) + υext(r) (6.9)

υext(r) = −
NMM∑

k=1

qk
| r − Rk | = δEcoul

QM/MM [n]

δn(r)
(6.10)
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where the single-particle operators υ(r), υH(r), and υxc(r) have been defined in
Eqs. (5.1), (5.30), and (5.31), respectively, and the functional Ecoul

QM/MM [n] for the
electrostatic embedding QM/MM Coulomb interaction energy is:

Ecoul
QM/MM [n] = −

NMM∑

k=1

∫
qkn(r)

| r − Rk |dr +
NMM∑

k=1

Nn∑

α=1

qkZα

| Rα − Rk | (6.11)

Once the self-consistent minimization has produced converged orbitals and density,
one can compute the total energy of the full system as:

ETOT = EKS + Eel
QM/MM + EMM

= EKS + Ecoul
QM/MM + Enb

QM/MM + EMM (6.12)

where EKS is the value of the energy functional defined in Eqs. (5.22) and (5.23),
and Enb

QM/MM and EMM are obtained from Eqs. (6.5) and (6.3), respectively.

6.1.1 QM/MM Electrostatic Embedding in GPAW

As specified in the introduction, the QM/MMBOMD simulations of PtPOP in water
performed in the present work utilized the QM/MM electrostatic embedding method
as implemented in the ASE [8, 9] and GPAW programs [7]. The implementation is
the result of development work carried out in recent years with key contributions
from the research group where this PhD project has been realized. The PhD student
himself has been involved in the theoretical formulation of the method, and in the
development of the routines to compute QM/MM LJ interactions. All details of the
implementation have been presented in Ref. [7]. The code is available online within
the official releases of ASE (https://gitlab.com/ase/ase) and GPAW (https://gitlab.
com/gpaw/gpaw).

In this section, we provide the necessary information to understand how explicit
QM/MM electrostatic interactions are computed using the PAW formulation of KS
DFT. A broader overview of the QM/MMBOMD code will be given in the following
section (Sect. 6.2).

As we have seen in Sect. 5.4 of Chap.5, the PAW method works with pseudo
orbitals φ̃i (r) that replace the KS orbitals φi (r) in the SCF optimization of the
electron density. This prevents straightforward addition of the external potential of
the MM classical charges (υext(r)) to the PAW single-particle Hamiltonian h̃KS,
defined in Eqs. (5.92)–(5.95). Instead, we need to evaluate a transformed operator
υ̃ext(r) = T †υext(r)T , where the PAW transformation operator T has been defined
in Eq. (5.55). Analogously to the strategy employed in deriving the transformed KS
Hamiltonian h̃KS (see Eq. 5.90 in Sect. 5.4), we utilize the following relation:

https://gitlab.com/ase/ase
https://gitlab.com/gpaw/gpaw
https://gitlab.com/gpaw/gpaw
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υ̃ext(r)φ̃i (r) = δEcoul
QM/MM[n]
δφ̃∗

i (r)
(6.13)

We begin by writing the electrostatic embedding QM/MM Coulomb energy func-
tional Ecoul

QM/MM[n] using the total charge density ρ(r) defined in Eq. (5.71):

Ecoul
QM/MM[n] = −

NMM∑

k=1

∫
qkρ(r)

| r − Rk |dr (6.14)

We can see that this energy functional is the same as in Eq. (6.11) by inserting the
definition of ρ(r) (contained in Eqs. 5.70 and 5.71) into Eq. (6.14):

Ecoul
QM/MM[n] = −

NMM∑

k=1

∫ qk

(
n(r) −

Nn∑
α=1

δ(r − R)Zα

)

| r − Rk | dr

= −
NMM∑

k=1

∫
qkn(r)

| r − Rk |dr +
NMM∑

k=1

Nn∑

α=1

qkZα

| Rα − Rk | (6.15)

Next, we rewrite Eq. (6.14) using the PAW definition of the electron density n(r)
given in Eq. (5.59):

Ecoul
QM/MM[n] = −

NMM∑

k=1

∫ qk

(
n(r) −

Nn∑
α=1

Zα(r)

)

| r − Rk | dr

= −
NMM∑

k=1

∫ qk

[
ñ(r) +

Nn∑
α=1

Z̃α(r) +
Nn∑

α=1

(
nα(r) + Zα(r) − ñα(r) − Z̃α(r)

)]

|r − Rk | dr (6.16)

where we have further added and subtracted atom-centered compensation charges
Z̃α. The compensation charges Z̃α have been already introduced in Sect. 5.4 as
functions that, by construction, make the electrostatic multipole moments of terms
nα(r) + Zα(r) equal to those of terms ñα(r) + Z̃α(r). The use of these functions
leads to a simplification of the expression for theCoulomb interaction energy between
electrons and nuclei of the QM subsystem, as explained in Sect. 5.4. Similarly,
they also allow to achieve a simplification of the expression of the electrostatic
embedding QM/MM Coulomb energy functional. In fact, by construction, terms
nα(r) + Zα(r) − ñα(r) − Z̃α(r) do not interact with the MM point charges qk , and
the electrostatic embedding QM/MMCoulomb interaction energy reduces to a func-

tional of ρ̃(r) = ñ(r) +
Nn∑

α=1
Z̃α(r):



6.1 QM/MM Electrostatic Embedding 77

Ecoul
QM/MM[n] = −

NMM∑

k=1

∫ qk

(
ñ(r) +

Nn∑
α=1

Z̃α(r)
)

|r − Rk | dr

= −
NMM∑

k=1

∫
qk ρ̃(r)

|r − Rk |dr = Ecoul
QM/MM[ρ̃] (6.17)

Finally, with the definition of Ecoul
QM/MM[ρ̃] given in the second line of Eq. (6.17),

the functional derivative
δEcoul

QM/MM[ρ̃]
δφ̃∗

i (r)
is evaluated using the same rules as employed to

derive Eq. (5.91) in Sect. 5:

δEcoul
QM/MM[ρ̃]
δφ̃∗

i (r)
=

∫
δEcoul

QM/MM[ρ̃]
δñ(r′)

δñ(r′)
δφ̃∗

i (r)
dr′ +

Nn∑

α=1

∑

μ,ν

∂Ecoul
QM/MM[ρ̃]
∂Dα

μν

δDα
μν

δφ̃∗
i (r)

=
∫ ∫

δEcoul
QM/MM[ρ̃]
δρ̃(r′′)

δρ̃(r′′)
δñ(r′)

δñ(r′)
δφ̃∗

i (r)
dr′dr′′

+
Nn∑

α=1

∑

μ,ν

[∫
δEcoul

QM/MM[ρ̃]
δρ̃(r)

∂ρ̃(r)
∂Dα

μν

dr

]
δDα

μν

δφ̃∗
i (r)

= υext(r)φ̃i (r) +
Nn∑

α=1

∑

μ,ν

[∫
υext(r)

∂ρ̃(r)
∂Dα

μν

dr

]
p̃α

μ(r)〈 p̃α
ν |φ̃i 〉

= υext(r)φ̃i (r) +
Nn∑

α=1

∑

μ,ν

p̃α
μ(r)�hα,ext

μν 〈 p̃α
ν |φ̃i 〉 (6.18)

where �hα,ext
μν , appearing in the last line, is defined as:

�hα,ext
μν =

∫
υext(r)

∂ρ̃(r)
∂Dα

μν

d(r) (6.19)

By comparing the last line of Eq. (6.18) with Eq. (6.13) we derive the following
expression for υ̃ext(r):

υ̃ext(r) = υext(r) +
Nn∑

α=1

∑

μ,ν

| p̃α
μ〉�hα,ext

μν 〈 p̃α
ν | (6.20)

Within theGPAWQM/MMelectrostatic embedding scheme, the pseudo orbitals (and
corresponding electron density) that minimize the total energy of the full system, are
found by solving self-consistently the PAW transformedKS equations (see Eq. 5.89),
with a single particle Hamiltonian consisting of the sum of the PAW Hamiltonian of
Eq. (5.95) and the operator υ̃ext(r):
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h̃el
KS = h̃KS + υ̃ext(r) (6.21)

The total energy after convergence of the density can be computed from:

ETOT = EPAW + Eel
QM/MM + EMM

= EPAW + Ecoul
QM/MM + Enb

QM/MM + EMM (6.22)

where EPAW and Ecoul
QM/MM are obtained from Eqs. (5.83) and (6.17), respectively,

Enb
QM/MM is computed from the LJ potential of Eq. (6.5), and EMM, for a classical

force field of rigid molecules, is given by Eq. (6.3).
We note that, in the derivation outlined above, we have not introduced approxima-

tions to the form of the QM/MM electrostatic embedding scheme. Besides, within
GPAW, computation of QM/MM Coulomb interactions between the QM electronic
density and the MM point charges (the most computationally demanding aspect of
the QM/MM electrostatic embedding scheme) is straightforward and computation-
ally efficient. Limiting the computational cost brought about by the calculation of
the explicit QM/MM electrostatic interactions is achieved by exploiting the cost
optimization tools inherent in GPAW [7, 10, 11]:

• Like all other potentials in GPAW, the external point charge MM potential is
evaluated on domains of a real-space grid distributed among parallel processors
(parallelization using domain decomposition).

• ρ̃(r), which interacts with the MM charges in Eq. (6.17), is a smooth quantity and
thus can be represented on relatively coarse grids.

• The size of the cell in which the QM subsystem is represented can be kept smaller
than the cell of the full QM/MM system.

Lastly, a more technical consideration. The QM/MM electrostatic embedding
scheme does not account for short-range exchange repulsion between electrons of
the QM subsystem andMM atoms. This can cause an unphysical overpolarization of
the QM electron density close to positive MM charges (the so-called charge spill-out
effect [12]). To avoid this inconvenience, the implementation replaces, at distances
below a certain cutoff radius, the basic form of the external potential (Eq. 6.10)
with an analytical potential that goes smoothly towards a finite value for distances
that tend to zero. The short-range potential has a 6th order polynomial form and
matches the potential of Eq. (6.10) at the cutoff. More details about this aspect of the
implementation can be found in Ref. [7].

6.2 Direct QM/MM Molecular Dynamics

In the previous chapters and sections, we have provided an overview of the strategies
that, in the present work, have been adopted to find approximate solutions to the
time-independent electronic Schrödinger equation for a system in either the ground
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or an excited state. In particular, we have focused on the GPAWDFT code, our�SCF
implementation, and on how to define a hybrid solute-solvent system within it, for
multiscale simulations. The last recipe we require to provide a complete view on
the QM/MM BOMD strategy, as developed and employed in this project, is how to
perform the classical propagation of such hybrid systems.

Newton’s classical equations of motion have already been introduced in Sect. 4.2
of Chap.4, in the context of fully ab initio BOMD simulations. Let us rewrite them
here for a collection of atoms defining a QM/MM system:

R̈a − Fa

Ma
= 0 (6.23)

whereRa and Ma are, respectively, the position vector and mass of particle a, which
can be either a QM nucleus α or an MM atom k, and Fa is the force acting on it. In
Eq. (6.23) we have used the notation ḟ = ∂ f

∂t to indicate derivatives with respect to
time.

The numerical integrator that is usually employed to solveEq. (6.23) is the velocity
Verlet algorithm [13], inwhich positions and velocities of the particles are propagated
according to the following equations:

Ra(t + �t) = Ra(t) + Ṙa(t)�t + Fa(t)

2Ma
�t2 (6.24)

Ṙa(t + �t) = Ṙa(t) + Fa(t) + Fa(t + �t)

2Ma
�t (6.25)

where �t is the classical time step. Generally, velocity Verlet is preferred over more
elaborate numerical integration schemes, like the Runge–Kutta methods, because it
provides good long-term stability of the total energy by ensuring time reversibility
[14].

Equations (6.24) and (6.25) conserve the total energy of the system and, thus,
generate a microcanonical (NVE) ensemble. When the interest is in equilibrium
thermal properties or in the dynamics of a molecule in a heat bath, as is the case
for the QM/MM BOMD simulations presented in this work, it is more desirable to
perform the propagation in a canonical (NVT) ensemble. A commonly employed
method in these cases is Langevin dynamics [14], in which friction terms γa and
random forces Frand

a are added to Newton’s equations of motion:

R̈a = −γaṘa + Fa

Ma
+ Frand

a

Ma
(6.26)

At time t in the propagation, the random force on particle a is connected to the target
temperature T through:
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Frand
a (t) = √

2MakbTγaηa(t) (6.27)

where kb is the Boltzmann constant, and ηa is a Gaussian random process. The
advantage of using Langevin dynamics over less sophisticated thermostat methods
based on rescaling of the velocities, like the Berendsen temperature-coupling scheme
[15], is that the former generates a true NVT ensemble with the correct fluctuations
of properties, while the latter produces only correct thermal averages but incorrect
fluctuations [16]. Of course, when the focus is on the detailed microscopic dynamics
of a solute, the Langevin (stochastic) thermostat has to be applied only to the solvent,
which is done by setting to 0 the friction γa for the atoms of the solute, which will
then be propagated by Newton’s equations of motion.

Our QM/MM BOMD implementation uses the MD routines available in ASE [8]
for numerical integration of the Langevin equations of motion. ASE implementation
of Langevin dynamics is based on a generalization of the velocity Verlet algorithm
[17] that can be used together with RATTLE distance constraints [18]. This type of
constraints utilize the method of Lagrange multipliers, and are required for the MM
subsystem, if the latter is described with a force field that does not allow for internal
motion. Furthermore, they can also be applied to fix bond lengths and bond angles
(indirectly, by constraining the distance between atoms that are both bonded to a
third one) involving hydrogen atoms within the QM part. Applying constraints to the
degrees of freedom of hydrogen atoms is done to increase the integration time step,
in order to achieve longer simulation times at the same computational cost.

The intramolecular forces Fa needed for the classical propagation of the nuclei
are computed from the nuclear gradients of the total energy of the system. In our
GPAW implementation of QM/MM electrostatic embedding, the forces on the QM
atoms α are obtained by differentiating the expression of the total energy given by
Eq. (6.22) with respect to the nuclear positions Rα:

Fα = −∂EPAW

∂Rα
− ∂Ecoul

QM/MM

∂Rα
− ∂Enb

QM/MM

∂Rα

= Fα,PAW + Fcoul
α,QM/MM + Fnb

α,QM/MM (6.28)

where the first two terms are computed as Hellmann-Feynman forces plus contribu-
tions from the response of the KS orbitals to nuclear displacements (see Ref. [19] for
a description of how forces are calculated in the PAW method), whereas Fnb

α,QM/MM
is simply the derivative with respect to Rα of the LJ potential of Eq. (6.5). For the
MM atoms k, instead, we have:

Fk = −∂Ecoul
QM/MM

∂Rk
− ∂Enb

QM/MM

∂Rk
− ∂EMM

∂Rk

= Fcoul
k,QM/MM + Fnb

k,QM/MM + Fk,MM (6.29)

The first term in Eq. (6.29) is the most computationally expensive of all three, since
it represents the force on MM atom k due to interaction with the electron density of
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the QM part. Fcoul
k,QM/MM involves the following integral:

Fcoul
k,QM/MM = −∂Ecoul

QM/MM

∂Rk

= −
∫

qk ρ̃(r)
|r − Rk |2

r − Rk

|r − Rk |dr = −
∫

qk ρ̃(r)
|r − Rk |3 (r − Rk) dr (6.30)

The other two terms are straightforward to compute, as they are obtained as the
derivative with respect to Rk of LJ potentials and the Coulomb interaction energy
between point charges (see Eqs. 6.3 and 6.5). Note that in case the interaction sites
of the MMmodel do not coincide with the MM atoms, one first computes the forces
on the interaction sites and then distributes them to the MM atoms according to the
relative positions between interaction sites and MM atoms [20].

When simulating PtPOP in TIP4P water molecules, we have found it necessary
to include counterions in the simulation box to avoid formation of vortices of water
molecules around the complex, which we observed in the trajectories unwrapped
from periodic boundary conditions (PBCs). The formation of vortices has been
attributed to the large negative charge of the complex and could be removed with the
addition of the counterions. In order to avoid any interference of the counterions on
the dynamics of the solute, we have implemented an additional spherical harmonic
potential that can be applied to the counterions to restrain them to parts of the sim-
ulation box far from the QM subsystem. The position restraint (pr) potential has the
following form:

υpr(Rc) =
⎧
⎨

⎩

1

2
kpr

(
d ′
c − dpr

)2
if d ′

c ≤ dpr

0 if d ′
c > dpr

(6.31)

where Rc is the position vector of counterion c, d ′
c =|Rc − RCQM | is the distance of

the counterion from the center of the QM cell (CQM), and dpr and kpr are a cutoff
radius and harmonic force constant, respectively. The forces on the counterions due
to the harmonic restraint potential are given by:

Fc,pr =
⎧
⎨

⎩
−kpr

(
1 − dpr

d ′
c

) (
Rc − RCQM

)
if d ′

c ≤ dpr

0 if d ′
c > dpr

(6.32)

Thus, the restrained counterions experience a harmonic force inside a sphere of radius
dpr and centered at RCQM that drives them outside this region, where Fc,pr = 0.

In all QM/MMBOMD simulations performed in this work, PBCs were treated by
translating solvent molecules with respect to the center of the QM cell to conform the
minimum image convention [13]. Furthermore, all electrostatic interactions within
the QM/MM simulation box were computed in toto. We found that this did not
significantly affect the computational cost for boxes of sizes as those used in the
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simulations. We note, on the other hand, that long-range cutoff schemes for the
electrostatic interactions are available in the current implementation of the GPAW
QM/MM code [7], following recent development work.

6.2.1 Overview of the QM/MM BOMD Code

Figure6.2 shows the basic algorithm underlying direct QM/MMBOMD simulations
in ASE and GPAW. Like GPAW, ASE is also written in Python. Object-oriented
programming in Python offers a high degree of modularity and interfacing between
different parts of the code.ASE takes care of creating and handling an atomistic object
defining the QM/MM system of atoms. The different energy terms and the forces
on the particles are obtained by calling, from within ASE, an interface calculator
to GPAW and internal ASE calculators equipped with force fields for the MM part.
Additional ASE modules perform the remaining tasks: applying PBCs, integrating
the classical equations of motion, enforcing geometry constraints, outputting data.
An overview of the ASE and GPAWmodules that are involved in a QM/MMBOMD
simulation is provided in Fig. 6.2.

In a nutshell, a QM/MM BOMD simulation in ASE and GPAW involves the
following:

1. Set up the initial conditions for the dynamics. This consists in the initialization
of an atomistic object containing positions (Ra(0)) and velocities (Ṙa(0)) at time
zero for all atoms of the QM/MM system. This step is done exclusively within
ASE.

2. Compute atomic forces and total energy of the QM/MM system. The calculations
are steered by a QM/MM interfacer (the qmmm.pymodule in ASE, see algorithm
in Fig. 6.2), which also takes care of applying PBCs. The interfacer communicates
with two calculators: (i) an MM force field calculator built in ASE, which com-
putes MM total energy EMM and forces due to interactions between MM point
charges (Fk,MM), and (ii) GPAW. In GPAW, the following takes place:

• Set up the external potential of the MM point charges υext(r).
• Solve self-consistently the PAW transformed KS equations (Eq. 5.89) with
single-particle KS Hamiltonian including υext(r). In the case of excited-state
simulations, this step involves the application of �SCF constraints on the
orbital occupation numbers using the implementation of Gaussian smearing
�SCF described in Sect. 5.5 of Chap.5.

• Compute the PAW total energy EPAW (Eq. 5.83), the electrostatic embedding
QM/MMCoulomb interaction energy Ecoul

QM/MM (Eq. 6.17), and the correspond-
ing forces on the QM nuclei (Fα,PAW, Fcoul

α,QM/MM).• Compute the forces on MM atoms due to Coulomb interactions between the
MM point charges and the converged electronic density of the QM subsystem
(Eq. 6.30).
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Fig. 6.2 Basic algorithm to perform on-the-fly QM/MM BOMD simulations in ASE & GPAW.
The color code links ASE (https://gitlab.com/ase/ase) and GPAW (https://gitlab.com/gpaw/gpaw)
modules to the specific tasks and operations they are called to fulfil during a simulation. The Gaus-
sian smearing �SCF method has been implemented in the GPAW occupations.py module
within the following development branch: https://gitlab.com/glevi/gpaw/tree/Dscf_gauss. Other
modules that have been object of development work in the course of the Ph.D. project are the
constraints.py and qmmm.py modules in ASE (available in the official release of the code)

https://gitlab.com/ase/ase
https://gitlab.com/gpaw/gpaw
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss
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Finally, the interfacer itself contains functions to compute the energy and forces
fromother non-bondedQM/MMinteractions (Enb

QM/MM,F
nb
α,QM/MM andFnb

k,QM/MM)
using a LJ potential (Eq. 6.5).

3. Take a step in theBOMDpropagation to find a new set of atomic positions (Ra(t +
�t)) and velocities (Ṙa(t + �t)). This is done by ASE internal algorithms for
solving the classical equations of motion with forces computed in step 2. In
this step, geometry constraints can be enforced using ASE implementation of
RATTLE, if necessary.

4. Repeat steps 2 and 3 until the required total simulation time is reached.

6.2.2 Generalized Normal Mode Analysis

Here, we provide some background on a technique for vibrational analysis that can
be used to obtain a picture of intramolecular vibrational energy redistribution (IVR)
from BOMD trajectories of a nonequilibrium molecular system [21]. The method
was first proposed by Strachan [22, 23], and is based on a decomposition of the total
vibrational energy in terms of so-called generalized normal modes. In the present
work, we have carried out this type of vibrational analysis on nonequilibrium vacuum
and solution-phase trajectories of PtPOP in the first singlet excited state. These
simulations and the results of the analysis will be presented in Chap.13.

Following Strachan [23], generalized normal modes Qp defined as vibrational
modeswhose time evolution is uncorrelated to each other (andhence are not harmonic
in general): 〈

Q̇ p(t)Q̇q(t)
〉 ∝ δpq (6.33)

where δpq is the Kronecker delta, can be obtained from anMD simulation of a system
of Nn atoms by diagonalizing the 3Nn × 3Nn covariance matrixK of mass weighted
cartesian velocities, whose elements are:

Kpq = 1

2

〈√
MpMqVp(t)Vq(t)

〉
(6.34)

where M and V indicate respectively atomic masses and (vibrational) velocities in
the body-fixed frame that translates and rotates with the system, and p and q run over
the 3Nn cartesian components. The matrixLwhose columns are the 3Nn normalized
vibrational mode eigenvectors derived from diagonalization of K can be used to
obtain a set of generalized normal mode velocities at each step of an MD trajectory
by the following projection:

Q̇(t) = LTV(t) (6.35)

where Q̇(t) and V(t) are 3Nn × 1 vectors of the instantaneous generalized normal
mode and body-fixed-frame velocities, respectively, and LT is the transpose of the
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matrix L. The vibrational kinetic energy of the system can be decomposed into
contributions from individual vibrational modes according to:

Evib(t) = 1

2

3Nn∑

p=1

Q̇2
p(t) =

3Nn∑

p=1

Evib,p(t) (6.36)

Thus, one can monitor the evolution of the portion of total vibrational kinetic energy
shared by each generalized normal mode during a trajectory propagation, by pro-
jecting the body-fixed-frame velocities along the vibrational mode vectors through
Eq. (6.35) and then computing the Evib,p(t) terms appearing in Eq. (6.36).

This procedure provides a means to draw a qualitative picture of intramolecular
energy flow in a complex system and was recently successfully applied to analyse
ab initio MD trajectories to investigate IVR processes in uracil [21]. Moreover, the
generalized normal mode analysis briefly illustrated here was also used in another
study, in conjunction with QM/MM simulations of a metal ion in water to decom-
pose solute-solvent thermal fluctuations in terms of vibrational modes to support the
analysis of X-ray absorption measurements [24].

We have implemented the method in a script using the Matlab programming
language. The script is included in Appendix A.
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Part III
Time-Resolved Ultrafast X-Ray Scattering



Chapter 7
Observing Molecular Motion in Solution
with X-Rays

Scattering of X-rays on a molecular system involves a change of the wave vector

|k0| = 2π

λ
of the incident photon with wavelength λ. This variation is described by

the scattering vector q:
q = k0 − ks (7.1)

whereks is thewave vector of the scattered photon. In this thesiswewill be concerned
only with elastic scattering events, in which |ks| = |k0|, and:

q = |q| = 2|k0| sin
(

θ

2

)
= 4π

λ
sin

(
θ

2

)
(7.2)

where θ is the angle between the wave vectors ks and k0. This fundamental process of
light-matter interaction can be exploited for structural determinations at the atomic
scale resolution. X-ray scattering techniques to obtain the structure of molecules in
crystal or solution phase have undergone tremendous improvements over the last
decades [1].

One of the greatest achievements reached in the X-ray field in recent years is the
development of time-resolved X-ray scattering techniques to probe atomic motion
as it occurs in real time [2–5]. The aim of the present chapter is to give a general
overview of pump-probe X-ray scattering experiments as performed by the group of
our experimental collaborators to investigate photoinduced dynamical processes in
complex molecular systems in solution. Subsequently, in Chap.8, we will see how
these experiments are typically analysed in the group of our experimental collabo-
rators, and how BOMD data can be used to simulate the scattering signal, offering
assistance to the interpretation of the experimental outcomes.
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7.1 Pump-Probe Experiments at XFELs

Time-resolved structural determinations with X-rays are based on the pump-probe
operative principle: an ultrashort optical pump laser initiates a reaction, which is
probed, after a time delay tp, by an ultrashort X-ray pulse focused on the sample. By
collecting and putting in a sequence scattering images acquired at different pump-
probe time delays, it is possible to produce a “molecular movie” of the dynamics
consisting of a series of “snapshots” of atomic motion, if the setup permits to achieve
an adequate time resolution. The pump-probe experiments that we perform use a UV-
vis ultrashort laser that triggers nuclear dynamics by electronically exciting solute
molecules in dilute solution. The use of a UV-vis pump pulse implies that the pro-
cesses that can be studiedwith this technique are photochemically activated reactions.
However, one should not think that this confines the investigation to excited-state
PESs. As we will see in the next section, a careful choice of pump-pulse parameters
can enable direct probing of ground-state PESs as well.

In a typical optical pump/X-ray probe experiment in solution, the beams of the
two lasers are focused on a liquid jet with the sample. The liquid jet is produced
through a nozzle and allows continuous replenishment of the sample [6]. The X-ray
signal is collected, at a given pump-probe time delay, on a 2D detector positioned on a
plane perpendicular to the direction of propagation of the X-ray beam. A schematic
diagram of the setup of a standard time-resolved X-ray scattering experiment in
solution is shown in Fig. 7.1.

Molecular reactions involving bond breaking/formation unfold on femtosecond
time scales. Therefore the pump-probe apparatus that we require to investigate such
reactions should ensure femtosecond time resolution. In ordinary X-ray diffrac-
tion measurements on crystals, the long-range order that characterizes the sample
allows constructing interference of the diffracted waves for special q directions. As a

Fig. 7.1 Schematical illustration of an optical pump/X-ray probe setup for time-resolved X-ray
diffuse scattering (XDS) experiments
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consequence, the diffraction pattern features sharp peaks, the so-called Bragg peaks,
at specific locations. Compared to ordered materials, disordered molecules in solu-
tion give rise to diffuse and weak diffraction patterns covering a vast portion of q
space (as the illustration of a 2D scattering pattern of a solution in Fig. 7.1 suggests).
This is due to the broad range of orientations and nuclear configurations that exist
in solution. Commonly, one refers to scattering from disordered materials as “X-ray
diffuse scattering” (XDS).

The time resolution of a pump-probe XDS experiment can be limited by either
one of these two factors: (i) the shortest time in which the X-ray beam is able to
deliver enough photons for a detectable signal to be measured, and (ii) the jitter
between pump and probe pulses. The only coherent X-ray sources existing in the
world that are able to produce hard X-ray pulses as short as a few fs, with sufficient
brilliance, are X-ray free-electron lasers (XFELs) [2, 7–9]. The world’s first XFEL,
the Linac Coherent Light Source (LCLS)1 of Stanford, became operational in 2009
[9]. The PtPOP time-resolved XDS measurements that will be presented in the next
section have been performed at LCLS. The second oldestXFEL is SACLA2, in Japan.
Three other facilities started operation in 2017: the European XFEL3 in Hamburg,
the Pohang Accelerator Laboratory4 in South Korea, and the SwissFEL at the Paul
Scherrer Institute in Switzerland.5 These large scale facilities provide flashes of X-
rays with a duration of tens of fs [2, 7, 10], and can achieve fluxes of around 1012

photons per pulse [2, 7, 10].Moreover, they are equippedwith timing-tools to control
with femtosecond resolution the jitter between the laser pump and the X-ray probe
[2, 7, 11].

7.1.1 The Difference Scattering Signal

In order to enhance photoinduced structural changes, one usually records differ-
ence scattering signals during a time-resolved XDS experiment, by taking, at each
time delay, the difference between an image with the laser pump pulse turned on
(Son(q, tp)) and one with the laser turned off (Soff(q, tp)):

�S(q, tp) = Son(q, tp) − Soff(q, tp) (7.3)

This procedure removes all contributions to the scattering that are unaltered by pho-
toexcitation, which include inelastic scattering [12] or the scattering from that large
portion of the sample that is not perturbed by the laser.

1https://lcls.slac.stanford.edu/.
2http://xfel.riken.jp/eng/.
3https://www.xfel.eu/.
4http://pal.postech.ac.kr/paleng/.
5https://www.psi.ch/swissfel/.

https://lcls.slac.stanford.edu/
http://xfel.riken.jp/eng/
https://www.xfel.eu/
http://pal.postech.ac.kr/paleng/
https://www.psi.ch/swissfel/
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The signal when the laser pump pulse is off is the scattering from a (stationary)
thermal equilibrium ensemble of ground-state molecules (SeqGS(q)):

Soff(q, tp) = SeqGS(q) (7.4)

After laser excitation, the population of molecules in solution will be distributed over
the electronic ground state and an excited state (assuming excitation occurs to a single
electronic state). Hence, the scattering after the laser pump pulse has been on is made
up of contributions from the non-stationary excited-state population (SES(q, tp)) and
from the ensemble of molecules remaining in the ground state:

Son(q, tp) = αSES(q, tp) + SeqGS(q) − αShGS(q, tp) (7.5)

where α is the fraction of excited-state molecules, and ShGS(q, tp) is the signal arising
from the difference between the nuclear distribution of the equilibrium ground-state
ensemble and that of the non-stationary ensemble of molecules remaining in the
ground state after excitation. ShGS(q, tp) is the signature of the hole left in the ground-
state distribution by the pulse. α is assumed to be constant in time. We will only
consider scattering signals recorded at times considerably shorter than the lifetime
of the excited state, for which the assumption of a constant α is valid. By combining
Eqs. (7.3), (7.4) and (7.5),we see that the difference scattering signal can be expressed
as:

�S(q, tp) = α
[
SES(q, tp) − ShGS(q, tp)

]
(7.6)

7.1.2 Anisotropy in Time-Resolved X-Ray Scattering Signals

Another important aspect of the scattering signal has to be mentioned. When using
a linearly polarized laser pump pulse, as usually is the case in standard pump-probe
setups, among the molecules that are oriented randomly in solution, the laser will
preferentially excite those with the transition dipole moment parallel to the laser
polarization axis. Therefore, for times shorter than the rotational correlation time
of the photoexcited molecule in solution, the X-ray scattering signal will appear
anisotropic. With the femtosecond time resolution available at XFELs, these time
scales have become accessible, since rotational dephasing of aligned molecules in
solution happens, usually, for times longer than 50 ps for medium-sized solutes [13].

In general, the theoretical interpretation of anisotropic scattering patterns of poly-
atomic molecules is complicated [14]. However, the treatment considerably simpli-
fies in the case of symmetric top molecules, like PtPOP, with the transition dipole
moment parallel to the unique axis of symmetry, as it has been shown by Baskin
and Zewail for ultrafast electron diffraction [15, 16], and later by U. Lorenz et al. in
our group for X-ray scattering signals [14]. We further restrict out attention to one-
photon absorption processes. If all the symmetry restrictions listed before are met,
one-photon absorption of a linearly polarized pulse by a thermal molecular ensemble
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results in the formation of an excited-state population with a cosine-squared distri-
bution of the dipole moment with respect to the laser polarization axis, and of a hole,
representing depletion of the equilibrium ground-state ensemble, having the same
rotational symmetry as the excited state [14, 15, 17]. In this case, the difference
scattering signal can be decomposed into two contributions [14, 18]:

�S(q, θq, tp) = �S0(q, tp) + P2(cos θq)�S2(q, tp) (7.7)

where P2 is the second-order Legendre polynomial (P2(x) = (3x2 − 1)/2) and θq
is the angle between the laser polarization axis and the scattering vector q, which
can be inferred from the geometry of the experiment [14, 15]. Extracting �S0(q, tp)
and �S2(q, tp) from the total difference scattering signal is a straightforward linear
fitting procedure at each fixed value of q [14, 18]. The two terms can then be analysed
separately. �S0(q, tp) is an isotropic term, in that it has the same form of the X-
ray scattering signal one would obtain from an isotropic ensemble [14, 18], and
can be analysed using the same tools that are used to interpret scattering patterns
of isotropic samples. �S2(q, tp) is called anisotropic scattering term. It contains
coefficients related to the rotational distribution of the photoexcited ensemble, and
further encodes information on the orientation of atomic distances with respect to
the transition dipole moment [14, 18].

Techniques to process anisotropic scattering signals according to the separation
in the two contributions�S0(q, tp) and�S2(q, tp) have been refined and are becom-
ing routine in the group of our experimental collaborators [18, 19]. Recently, we
have carried out one of the first quantitative analysis of the anisotropic contribution
�S2(q, tp) in the scattering signal of a photoexcited complex in solution [18]. The
investigated complex was PtPOP, and the analysis allowed to obtain the value of the
Pt–Pt distance in solution, which is the key structural parameter of the molecule. Part
of the present Ph.D. project has been spent in assisting this analysis. Methods for
simulating X-ray scattering signals to analyse the experimental data will be briefly
discussed in Chap. 8. In the next section we will present the time-resolved XDS
experiment on PtPOP that we have performed at the LCLS XFEL of Stanford.

7.2 Measuring PtPOP in Water

We have measured the time-dependent X-ray scattering signal upon photoexcitation
by an ultrashort optical pulse of a dilute 80 mM aqueous solution of PtPOP with
femtosecond time resolution. The measurements were performed at the X-ray Pump
Probe (XPP) experimental station [8] at the LCLS XFEL facility of Stanford. In the
experiment, a linearly polarized pump pulse with duration of ∼50 fs (full width at
halfmaximum (FWHM) of the spectral intensity profile) andwavelength of∼395nm
was used. Figure7.2 shows a Gaussian fit to the spectral intensity profile of the pump
pulse, together with the experimental absorption spectrum of PtPOP in water [20].
In the range of wavelengths shown in the figure, excitation occurs from the ground



94 7 Observing Molecular Motion in Solution with X-Rays

Fig. 7.2 Gaussian fit (purple
line) to the spectral intensity
profile of the ultrashort pump
pulse used in the
time-resolved XDS
experiment on PtPOP in
water [18, 20], together with
the S0 → S1 band (black
line) of the absorption
spectrum of the molecule
measured in water [20]

state (S0) to the lowest-lying singlet excited state (S1) of the complex. Figure7.2
highlights that the pulse covered a range of excitation energies at the far red side of
the 370nm maximum of the S0 → S1 absorption band.

The raw data collected at the detector were processed by T. B. van Driel to apply
the corrections described in Ref. [21]. Afterwards, 2D difference scattering images
were obtained by taking the difference between the corrected images acquired with
the laser on and the corrected images acquired with the laser off. Finally, 1D isotropic
and anisotropic difference scattering curves were obtained, at each pump-probe time
delay, according to Eq. (7.7), following the procedure outlined in Ref. [18].

Figure7.3 shows the isotropic and anisotropic contributions to the difference scat-
tering signal, �S0(q, tp) and �S2(q, tp), as a function of the time delay tp and the
magnitude of the scattering vector q. Both signals exhibit a pronounced beating pat-
tern that lasts for at least ∼3.5 ps. The two data sets were analysed by singular-value
decomposition (SVD), and the Fourier transforms (FTs) of the first right-singular
vectors of �S0(q, tp) and �S2(q, tp) are plotted in the insets of Fig. 7.3. The FTs
reveal that the oscillations in the scattering signals have a period of ∼285 fs. This
value is very close to the period assigned to Pt–Pt stretching vibrations in the ground
state from Raman spectroscopic (∼283 fs) [22] and transient absorption (∼281 fs)
[23] measurements in aqueous solution. Besides, there is no clear peak in the FTs
around 224 fs, which is the value of the Pt–Pt vibrational period characteristic of the
first singlet excited state of PtPOP [23]. This leads us to think that, at the particular
conditions at which the experiment was performed, all contribution to the observed
dynamics from Pt–Pt coherent vibrations in the excited state is suppressed, while the
oscillatory behaviour in the difference signal must arise from motion in the ground-
state potential surface. In Chap. 10, we will examine in depth how the choice of the
off-resonant pump pulse shown in Fig. 7.2 created the conditions to probe excusively
ground-state structural dynamics upon photoexcitation. In Chap. 12, we will show
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Fig. 7.3 Isotropic (�S0(q, tp), top) and anisotropic (�S2(q, tp), bottom) difference scattering
signals as obtained from ultrafast XDS measurements upon photoexcitation of PtPOP to the S1
state in water. The signals are expressed in electronic units (e.u.) per solute molecule. Electronic
units represent the scattering of a free electron, i.e. the Thomson cross-section. The insets show
the FT of the first right-singular vector of an SVD analysis of each of the two sets of difference
scattering signals

that a picture of nonequilibrium dynamics produced using QM/MM BOMD trajec-
tories in the S0 and S1 states of PtPOP in water substantiates the hypothesis we have
just formulated.
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Chapter 8
Simulating and Analysing X-Ray Diffuse
Scattering Signals

Due to the lackof long-rangeperiodic order in solution, it is not possible to reconstruct
the structure of a liquid sample directly from an X-ray scattering pattern, as one
would do in X-ray crystallography [1–3]. Instead, one has to rely on a suitable
structural model to fit the experimental data. In XDS pump-probe measurements
the information on the structural changes upon photoirradiation are condensed in
1D difference scattering curves, which are inherently dominated by scattering from
distributions of interatomic distances. This makes the determination of the structural
changes undergone by solvated molecules particularly challenging.

In this chapter, wewill illustrate how atomisticmodelling brings aid to the analysis
and interpretation of ultrafast XDS data. In order to do so, we show how it is possible
to calculate time-dependent scattering signals frommolecular structures and nuclear
distributions generated by BOMD simulations. We will focus, in particular, on the
modelling strategy employed to analyse the XDS data collected in the pump-probe
XFEL experiments on PtPOP in aqueous solution, described in Sect. 7.2 of Chap.7.
Before doing that, in the following section, we shall briefly mention the main results
of the theory of time-resolved X-ray scattering of molecules. The details of process-
ing and analysing X-ray solution scattering data can be found in Refs. [1–4, 6–8].
The theoretical framework for interpretation of time-resolvedX-ray scattering exper-
iments has been formulated over the past two decades. Key works in this context are
represented by Refs. [9–14].

8.1 Calculating X-Ray Scattering Signals

Ignoring all inelastic contributions and quantum coherence effects, and further
neglecting the frequency spread of the X-ray probe pulse (known as the “static
approximation”), the time-dependent X-ray scattering signal of a system of Nn atoms
at a pump-probe time delay tp can be expressed as [11]:

© Springer Nature Switzerland AG 2019
G. Levi, Photoinduced Molecular Dynamics in Solution, Springer Theses,
https://doi.org/10.1007/978-3-030-28611-8_8

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28611-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-28611-8_8


100 8 Simulating and Analysing X-Ray Diffuse Scattering Signals

S(q, tp) =
∫

�̃(R, tp) | F(R,q) |2 dR (8.1)

where S(q, tp) is in units of the Thomson cross-section of a free electron, and �̃(R, tp)
is given by the instantaneous probability distribution of nuclear geometries created
by the pump pulse averaged over the intensity profile I (t − tp) of the X-ray pulse:

�̃(R, tp) =
∫ ∞

0
I (t − tp)�(R, t)dt (8.2)

Equation (8.1) involves also the molecular form factor F(R,q), which represents
the scattering from a static nuclear configuration and is related to a Fourier transform
of the electron density of the system [11]. Under the assumption that the electron
density is unchanged upon excitation, Eq. (8.1) is valid for a system of molecules
distributed over different electronic states (�(R, t) = ∑

n �n(R, t), where �n(R, t)
is the nuclear probability distribution associated with state n). This approximation
is satisfied within the Independent Atom Model (IAM). According to the IAM, the
electron density is the sum of spherical atomic densities, and F(R,q) is given by:

F(R,q) =
Nn∑
a

fa(q)eiqRa (8.3)

where fa is an atomic form factor for atom a. Despite neglecting chemical bonding
between atoms, the IAM provides reasonable results in most cases [15]. In an X-ray
scattering calculation, the atomic form factors are taken from tabulated values [16].
In what follows, we focus the discussion on the case of excitation to only one excited
state.

8.1.1 Difference Scattering Curves from BOMDDistributions

In Sect. 7.1 of the previous chapter, we have said that the difference scattering signal
is composed of a term due to scattering from the excited-state ensemble of molecules
and a term that is the signature of the hole left in the ground state by the laser (see
Eq. (7.6)). From Eq. (8.1) we can obtain Eq. (7.6) using nuclear distributions:

�S(q, tp) = Son(q, tp) − Soff (q, tp)

=
∫ [

�̃on(R, tp) − �̃off (R, tp)
] | F(R, q) |2 dR

=
∫ {

α�̃ES(R, tp) +
[
�̃
eq
GS(R) − α�̃hGS(R, tp)

]
− �̃

eq
GS(R)

}
| F(R, q) |2 dR

=
∫

α
[
�̃ES(R, tp) − �̃hGS(R, tp)

]
| F(R, q) |2 dR

= α
[
SES(q, tp) − ShGS(q, tp)

]
(8.4)
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where we have used that the nuclear probability distribution created by the pump
pulse is given by the distribution in the excited state plus the difference between the
ground-state equilibrium distribution and the ground-state hole.

In order to simulate the difference scattering signal of a photoexcited molecular
ensemble we need to calculate SES(q, tp) and ShGS(q, tp). Furthermore, to account
for the polarization of the pump pulse, we need to consider the decomposition into
an isotropic and an anisotropic terms, according to Eq. (7.7). It can be shown [4,
12], using Eq. (8.1) and the IAM (Eq. (8.3)), that the isotropic scattering signal of a
species s, where for species we indicate either the excited state or the ground-state
hole, can be computed from:

Ss0(q, tp) =
Nn∑
a,b

fa(q) fb(q)4π
∫ ∞

0
d2�̃s

ab(d, tp)
sin(qd)

qd
d(d) (8.5)

where �̃s
ab(d, tp) is the time-averaged pairwise probability distribution function of

the distance d between atoms a and b, and fa(q) and fb(q) are their respective form
factors. Note that in Eq. (8.5) there is no vectorial dependence, in accordance with
the fact that the isotropic contribution of the scattering signal from the decompo-
sition Eq. (7.7) is equivalent to the scattering of a randomly oriented ensemble of
molecules [12].

Equation (8.5) can be recast in a more computationally convenient form, in which
the sums run over all atom types (where an atom type correspond to a particular
element) and the pairwise distribution functions are replaced by radial distribution
functions (RDFs) [4]. RDFs are readily obtained from BOMD simulations. The
relation that is used for the conversion is the definition of RDF between atom types l
and m as the ratio between a probability distribution function �̃s

lm(d, tp) that collects
the probability distributions �̃s

ab(d, tp), where atoms a and b belong to atom types l
and m, respectively, and the isotropic density �0

lm :

g̃slm(d, tp) = �̃s
lm(d, tp)

�0
lm

(8.6)

where �0
ab is the inverse of the volume V of the BOMD simulation box (�0

ab = 1/V ).
The isotropic scattering signal in terms of RDFs is given by [4]:

Ss0(q, tp) =
∑
l

N l
n f

2
l (q) +

∑
l,m

fl(q) fm(q)
Nl
n

(
Nm
n − δlm

)
V

4π

×
∫ Rbox

0
d2

[
g̃slm(d, tp) − g0lm

] sin(qd)

qd
d(d) (8.7)

in which Nl
n and Nm

n are the total number of atoms of type l andm, respectively, Rbox

is the length of the simulation box, and g0lm is the homogeneous density limit of the
RDF. All details of the above derivation can be found in Ref. [4]. Equation (8.7) has
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been implemented in the Matlab programming language by former PhD student and
Postdoc A. O. Dohn, who has co-supervised the present project in our group [4]. For
practical applications, when one is interested in a difference scattering signal, it is
more convenient to use directly the following relation:

�S0(q, tp) = α
∑
l,m

fl(q) fm(q)
Nl
n

(
Nm
n − δlm

)
V

4π

×
∫ Rbox

0
d2�g̃lm(d, tp)

sin(qd)

qd
d(d) (8.8)

where �g̃lm(d, tp) is the difference RDF given by:

�g̃lm(d, tp) = g̃ESlm (d, tp) − g̃GS,h
lm (d, tp) (8.9)

We have, therefore, modified the original script by A. O. Dohn to compute difference
scattering signals according to Eq. (8.8).

The anisotropic contribution to the scattering signal can be computed from a
formula that involves angle-dependent pairwise probability distribution functions
(�̃s

ab(d, ϑ, tp), where ϑ is the angle between the interatomic distance vector d and
the transition dipole moment of the molecule), as shown in Ref. [12]:

Ss2(q, tp) = − cs2(tp)
Nn∑
a,b

fa(q) fb(q)2π

×
∫ ∞

0

∫ π

0
d2 sin(ϑ)�̃s

ab(d, ϑ, tp)P2(cosϑ) j2(qd)d(d)d(ϑ) (8.10)

where j2 is the second spherical Bessel function ( j2(x) = (
3
x2 − 1

) sin(x)
x − 3 cos(x)

x2 ),
and the coefficient cs2(tp) describes the rotational distribution of the species s. The
time dependence of cs2(tp) is dictated by the rotational correlation time of s [17].
We have not implemented an equivalent formula using angle-resolved RDFs from
BOMDsimulations, yet.We note, on the other hand, that tomodel the anisotropic part
of the difference scattering data of PtPOP we found adequate to only employ single
molecular structures, in which case �̃s

ab(d, ϑ, tp) in Eq. (8.10) is a delta function, as
it will be explained in the next section.

8.2 Analysis of Ultrafast XDS Data

The strategy employed by our experimental collaborators for the quantitative analysis
of measured 1D difference XDS curves, like those shown in Fig. (7.2), is to compare
the signal to simulated curves within a maximum-likelihood framework [1, 2]. In
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other words, to infer the structural changes one minimises the difference between
the experimental data and the simulated signal by optimizing the structural model.
The model includes three terms:

�Smodel(q, tp) = �Ssolu(q, tp) + �Ssolu−solv(q, tp) + �Ssolv(q, tp) (8.11)

The first term, �Ssolu(q, tp), models changes in the distances between atoms of
the solute. Due to the very low concentrations at which XDS experiments are per-
formed, one neglects the scattering arising from interferences between different
solute molecules and considers only intramolecular distances [3]. The second term,
�Ssolu−solv(q, tp), is the scattering due to changes in solute-solvent distances. It
reflects rearrangements in the solvation shell around the solute, and it is, for this rea-
son, often referred to as cage term. The third contribution to the model,�Ssolv(q, tp),
accounts for changes in distances between atoms of the solvent, which usually reflect
changes in the thermodynamic state of the bulk solvent.

We now show how the isotropic and anisotropic contributions to each of the terms
in Eq. (8.11) are typically computed, and highlight the particular choices made in the
analysis of the PtPOP XDS data. In the calculation of the various terms we neglect
the finite duration of the X-ray probe pulse in Eq. (8.2), thus assuming that time
averaged nuclear distributions are equal to the instantaneous distributions.

8.2.1 The Solute Term

We first examine how the isotropic contribution to the scattering is modelled.
�Ssolu0 (q, tp) is given by the isotropic scattering of the excited state minus the
isotropic scattering from the ground-state hole:

�Ssolu0 (q, tp) = α
[
SsoluES,0(q, tp) − Sh,soluGS,0 (q, tp)

]
(8.12)

Here, the assumption is usually made that the two terms are the scattering of classical
single structures. This amounts to disregarding entirely the spread of the nuclear
distribution functions involving atoms of the solute. For a pair of atoms a and b the
pairwise probability distribution function becomes:

4πd2�̃s
ab(d, tp)d(d) = δ(d − ds

ab(tp))d(d) (8.13)

When Eq. (8.13) is inserted into Eq. (8.5), we obtain the formula that describes
Ssolu0,ES(q, tp) and Sh,solu0,GS (q, tp) under the approximation of neglecting the spread of the
distributions:

Ssolus,0 (q, tp) =
N solu
n∑
a,b

fa(q) fb(q)
sin[qds

ab(tp)]
qds

ab(tp)
(8.14)
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which is the well-knownDebye formula for the orientationally averaged scattering of
a gas-phase molecule [18].Wewill see how this approximation is justified in the case
of PtPOP in Chap.11, when we will compare the signal calculated from single gas-
phase structures with the scattering obtained fromRDFs generated through QM/MM
BOMD simulations. For the fitting of the experimental data, the scattering signal is
calculated for sets of ground- and excited-state structures generated by varying a
selection of structural parameters in the molecule. The risk of overfitting the data
limits the number of explored parameters to only a few, usually those involving
the atoms that scatters the most in the molecule, and that are expected to undergo
significant changes upon excitation.

In the case of the analysis of the PtPOPXDSdata, themodel for the solute assumed
a fixed excited-state structure and incorporated the time dependence through the Pt-Pt
distance (dPtPt) of a (delta-function) ground-state hole:

�Ssolu0 (q, tp) = α
[
SsoluES,0(q) − Sh,soluGS,0 (q, dPtPt(tp))

]
(8.15)

We will see more in detail how the structure for the excited state and those for
the ground state were constructed in Chap.11. The excitation fraction α, which is
a constant for the time scales considered in the analysis, can be treated as a free
parameter in the fitting. However, α and structural parameters in the fit are known to
be strongly correlated [2, 19]. For this reason,α was first determined by analysing the
difference scattering signal at a pump-probe timedelayof 4.5 ps, atwhichboth ground
and excited states are known to have reached vibrational equilibrium. Afterwards, α
was locked and the structural fitting of the time-dependent signal employed the Pt-Pt
distance of the ground-state hole as the only free parameter.

The anisotropic contribution to the difference scattering signal of the solute is
given by:

�Ssolu2 (q, tp) = α
[
SsoluES,2(q, tp) − Sh,soluGS,2 (q, tp)

]
(8.16)

Also in this case, the signals from the excited and ground states are computed using
single structure. Equation (8.10) with delta functions instead of nuclear distribution
functions becomes:

Ssolus,2 (q, tp) = −c2(tp)
N solu
n∑
a,b

fa(q) fb(q)P2[cosϑab(tp)] j2[qdab(tp)] (8.17)

The model that was used to fit the measured time-dependent anisotropic difference
scattering signal of PtPOP has the same form of Eq. (8.15):

�Ssolu2 (Q, t) = α
[
SsoluES,2(q) − Sh,soluGS,2 (q, dPtPt(tp))

]
(8.18)

Once again, the structural dynamics is parametrized only through the Pt–Pt distance
of the (delta-function) hole representing depletion of the ground-state ensemble.
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8.2.2 The Solute-Solvent Term

Due to the larger number of degrees of freedom (DOF) involved, the signal from
solute-solvent interferences cannot be described using single structures, and one
has to appeal to BOMD simulations to generate nuclear distributions. The strategy
that we commonly employ consists in determining the difference signal only once
using equilibrium ground- and excited-state distributions obtained from equilibrated
BOMD data; while the dynamics is modelled as a fraction of the final (equilibrium)
value through a scaling factor β(t). For the isotropic signal:

�Ssolu−solv
0 (q, tp) = β(t)�Ssolu−solv

MD (q) (8.19)

whereβ(t) grows from zero to the excitation fractionα.�Ssolu−solv
MD (q) in Eq. (8.19) is

computed from Eq. (8.8) with�g̃lm(d, tp) (see Eq. (8.9)) obtained from excited-state
equilibriumRDFs (g̃ESlm (d, tp) = gESlm (d, t) = g

ES,eq
lm (d)) and ground-state equilibrium

RDFs (g̃GS,h
lm (d, tp) = gGS,h

lm (d, t) = g
GS,eq
lm (d), where we assume that the hole distri-

butions have the same form of the equilibrium ground-state distributions). In the
computation of �g̃lm(d, tp), the index l for the first summation in Eq. (8.8) runs over
atom types within the solute and the index m for the second summation runs over
atom types of the solvent.

For the analysis of PtPOP we observed that there was no need to include the
solute-solvent term in the fit of �S2(q, tp), since the quality of the fit was already
sufficiently good without [17]. Therefore, this term was only taken into account in
the modelling of the isotropic contribution to the difference scattering signal through
Eq. (8.19). The RDFs to compute �Ssolu−solv

MD (q) were obtained from equilibrium
ground- and excited-state QM/MM BOMD data, as we will see in Chap.11.

8.2.3 The Solvent Term

The solvent term arises from changes in the thermodynamic variables of the bulk
solvent (temperature (T ), density (ρ) or pressure (p)). Variations of these parameters
happen as an effect of energy transfer from the solute to the solvent during the excited-
state relaxation events [7], and are isotropic. Therefore, one has to account for such
changes only in the isotropic part of the difference scattering signal. This is done
by determining in separate reference measurements the differential of the scattering
with respect to two of the three thermodynamic variables [7]. Usually one measures
the differential of the pressure and of the temperature.

Since changes in pressure of the solvent are known to take place on nanosecond
time scales [3], well beyond the range of pump-probe delays explored in the PtPOP
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experiments, in the modelling of the isotropic solvent difference scattering signal we
included only a term due to changes in temperature at constant pressure:

�Ssolv0 (q, tp) = �T (tp)
∂�Sref0 (q)

∂T

∣∣∣
ρ

(8.20)

8.2.4 Summarising the Model for the PtPOP Data

Collecting all terms presented in the previous paragraphs, the model used to analyse
the entire set of time-resolvedXDSdata collected in theXFEL experiments on PtPOP
in water described in Sect. 7.2 is:

�Smodel
0 (q, tp) = α

[
Ssolu0,ES(q) − Sh,solu0,GS (q, dPtPt(tp))

]

+ β(t)�Ssolu−solv
MD (q) + �T (tp)

∂�Sref0 (q)

∂T

∣∣∣
ρ

(8.21)

�Smodel
2 (q, tp) = α

[
Ssolu2,ES(q) − Sh,solu2,GS (q, dPtPt(tp))

]
(8.22)

Finally, we note that the general procedure outlined here to analyse 1D XDS
curves does not guarantee to reach a true global minimum in the optimization of the
model with respect to the experimental data. Prior experimental knowledge and the
support of QM/MM BOMD simulations are fundamental in this regard. For exam-
ple, the choice of modelling a time-dependent ground-state hole in Eqs. (8.21) and
(8.22), while fixing the structure of the excited state for PtPOP, was motivated by
a comparison of the period of the oscillating signal with the known Pt-Pt vibra-
tional period for the ground and excited states of the molecule, and by the guidance
offered by QM/MM BOMD simulations, which could confirm the hypothesis that
the observed dynamics is the signature of a moving ground-state hole. The assis-
tance of QM/MM BOMD simulations is even more important for the determination
of structural changes involving the solvation shell, and hence modelling of the term
�Ssolu−solv(q, tp), for which prior knowledge is often lacking. In Chap.11 we will
see more in detail how calculation of �Ssolu−solv(q, tp) from QM/MM BOMD sim-
ulations made up for deficiencies in the model of the �S0(q, tp) signal of PtPOP.
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Chapter 9
Gas-Phase Molecular Geometry

9.1 Computational Details of the GPAW Calculations

In all PtPOP simulations that are reported in this thesis, unless otherwise specified,
the electronic structure of the complex was calculated using GPAW [2, 3] with
representation of the KSmolecular orbitals in a basis of linear combination of atomic
orbitals (LCAO) [4].

The excited states were described with the �SCF scheme presented in Sect. 5.5.
We chose a σ of 0.01eV for theGaussian smearing of the orbital occupation numbers.
In the tests of the�SCF implementation (Sect. 5.5), this value of σ was found to bring
no detectable changes in the PES of the lowest-lying singlet state of the COmolecule
for geometries at which�SCFwithout Gaussian smeared constraints could converge
(see Fig. 5.8). A σ of 0.01 eV allowed to readily converge all steps of all �SCF tra-
jectories of PtPOP. For the open-shell singlet excited state, the calculations employed
the spin-unpolarized approach described in Sect. 5.5. Spin-unpolarized calculations
are computationally much cheaper for geometry optimizations and BOMD simula-
tions than Ziegler’s sum method [5], because the latter requires SCF convergence of
two single-determinant states, one having mixed singlet-triplet and one with triplet
spin symmetry.

The exchange-correlation functional employed in the calculations was the GGA
functional BLYP [6, 7], while the basis functions were tzp [4] for the Pt atoms and
dzp [4] for all other atoms. We used a grid spacing of the GPAW cell of 0.18 Å.
This choice of LCAO basis set and grid spacing ensures that the structure of the
complex is converged with respect to these simulation parameters, as shown in the
next section.

Parts of this chapter have been reproduced with permission from Ref. [1], https://doi.org/10.1021/
acs.jpcc.8b00301. Copyright 2018 American Chemical Society.
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9.2 Preliminary Studies

9.2.1 GPAW Convergence Tests

Electronic structure calculations are usually preceded by preparatory tests. When
usingGPAW,wemust ensure that (i) the size of the simulation cell is large enough for
a sufficiently accurate representation of the orbitals, and (ii) the molecular properties
of interest are converged with respect to spacing between points of the real-space
grid and, in the case of LCAO calculations, quality of the basis set.

The size of the cell containing the real-space grid on which numerical basis func-
tions and electron density of PtPOP were represented, was chosen such that the
distance between any of the atoms of the complex and any of the cell borders was
at least 6 Å. This choice of cell size was seen to be sufficient to eliminate spurious
effects due to truncation of the KS orbitals at the borders.

SinceweusedLCAOcalculations in all PtPOP simulations,we tested convergence
with respect to both the grid spacing and atomic orbital basis set. Convergence was
tested against the main structural parameter of interest, namely the Pt–Pt distance,
as shown in Fig. 9.1. Deviations smaller than 1% with respect to the Pt–Pt distance

Fig. 9.1 Convergence of the Pt–Pt distance of PtPOP in the ground state with respect to grid
spacing and LCAO basis set size. For each combination of grid spacing/basis set the geometry of the
molecule was fully optimized in vacuumwith a convergence criteria of 0.02 eV/Å for the maximum
force on all individual atoms. The syntax “sz(dzp)” indicates that the calculations employed single-
zeta (sz) functions from a double-zeta polarized (dzp) basis set. (Left) Contour plot of the Pt–Pt
distance. (Right) Contour plot of the percentage deviation of the Pt–Pt distance with respect to the
value obtained when using a 0.15 Å grid spacing with qzp basis set. A deviation of 1% corresponds
to an absolute difference of 0.03 Å. Satisfactory convergence is achieved for grid spacings smaller
than 0.20 Å and only when using polarized basis
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Fig. 9.2 Convergence of the Pt–Pt distance with respect to the size of the basis set. Each point is
obtained from a geometry optimization in vacuum at a grid spacing of 0.182 Å with different size
of the basis set. The y values express the percentage deviation of the Pt–Pt distance with respect to
the Pt–Pt distance obtained when using a 0.150 Å grid spacing with qzp basis set. Therefore, the
plot corresponds to a horizontal cut at 0.182 Å of the contour plot in Fig. 9.1(Right). This value of
grid spacing is that utilized in all GPAW calculations performed on PtPOP in the present work

obtained with the smallest grid spacing (0.15 Å) and largest basis set (qzp), are
achieved when employing grid spacings smaller than 0.20 Å and basis sets larger
than single-zeta and including polarization functions. The importance of including
polarization functions for an accurate description of the structure of the complex is
highlighted in Fig. 9.2.

Given the above results, the GPAW simulations of PtPOP could safely employ a
0.18 Å grid spacing and basis set of tzp quality for the Pt atoms and dzp for all other
atoms.

9.2.2 Molecular Orbitals and Electron Density

Figure9.3 shows a depiction of the HOMO and LUMO orbitals of the ground-state
PtPOP molecule fully optimized in vacuum with GPAW. The shape of the orbitals
clearly reflects their metal-metal dσ ∗ and pσ character, respectively: the HOMO is
antibonding in the region between the two Pt atoms and mainly localized outwards
along the Pt-Pt axis, the LUMO is σ -bonding, while also extending on the outer sides
of the PtP4 faces, a feature that is attributable to the involvement of p orbitals of the
phosphorus atoms [8].

Promotion of an electron from the HOMO to the LUMO leads to formation of
the S1 and T1 excited states of the molecule. Figure9.4 illustrates the effects of
excitation to the S1 state on the electron density of the complex. The dσ ∗ → pσ
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Fig. 9.3 HOMO and LUMO molecular orbitals of PtPOP ground state at the gas-phase optimized

geometry. Isovalues are drawn at 0.075
√
e−/Å3

Fig. 9.4 Difference between the electron density of the S1 and S0 states of PtPOP at the ground-state
GPAW optimized geometry of the complex (electron density S1—electron density S0). Isovalues
are drawn at 0.0056 e−/Å3. (Left) Negative part of the difference density. (Right) Positive values.
The integral over the volume of the positive or negative part of the difference density gives a value
of ±0.56 e−

transition results in build-up of electron density between the two Pt atoms and loss
of it along the Pt–Pt axis in outward position. Besides, gain of electron density in S1
is also apparent close to the P atoms, along the outer sides of the PtP4 faces, reflecting
the involvement of p ligand orbitals in the formation of the LUMO. This outward
shift of density compensates in part for the loss along the Pt–Pt axis.

9.2.3 Excitation Energies

Table9.1 reports computed vacuum S0 → S1 and S0 → T1 vertical excitation ener-
gies together with the respective experimental values.
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Table 9.1 Vertical S0 → S1 and S0 → T1 excitation energies of PtPOP in vacuum calculated
using �SCF in GPAW and comparison with experimental values retrieved from the literature. The
calculations were performed at the optimized ground-state vacuum geometry of the complex. All
values are in eV

Calc Exp [9, 10]

S0 → S1 3.50a 3.51b 3.35–3.44

S0 → T1 3.27 2.72–2.76

�(S1 − T1) 0.23a 0.24b 0.63–0.68
aComputed using Ziegler’s sum rule [5]
bObtained from spin-unpolarized calculations

The transition energies were calculated with �SCF in GPAW at the S0 gas-phase
optimized structure of PtPOP. For the S1 state we used both the spin-unpolarized
technique, which is the method we employed in all BOMD simulations of PtPOP,
and Ziegler’s sum rule.

Calculated vertical S0 → S1 transition energies arewithin∼3%of the experimen-
tal range of values obtained from the maximum of the S0 → S1 band of absorption
spectra of crystals [9, 10]. Almost exact agreement is found between the S1 excita-
tion energies computed using the two different�SCFmethods to describe the singlet
excited state. This confirms that the spin-unpolarized �SCF description of the S1
state of PtPOP has the same level of accuracy as calculations based on the more
computationally expensive sum rule.

The calculated T1 excitation energy is ∼20% larger than the experimental values.
This, in turn, causes the S1–T1 splitting to be underestimated by a factor of around 2.5.
A similar excitation energy for the triplet was obtained by Novozhilova et al. [11] by
TDDFTwith the BLYP functional and an all-electron basis set for Pt. We note that in
the present study we focus on the dynamics in the S1 state happening at times shorter
than the known intersystem crossing (ISC) time of PtPOP in water (∼14 ps [12]).
All excited-state BOMD simulations did not account for singlet-triplet transitions
induced by spin orbit couplings (SOCs) and, therefore, they were not affected by the
underestimation of the S1–T1 energy gap.

9.3 Ground- and Excited-State Geometries

The geometries of the ground state (S0) and lowest-lying singlet (S1) and triplet (T1)
excited states of PtPOP were fully optimized in vacuum using a quasi-Newton local
optimization algorithm implemented in ASE. A previous DFT study [13] identified
two conformers of PtPOP in the ground state with staggered (C4h symmetry) and
eclipsed (D4 symmetry) hydrogenbondingmotifs, respectively, the eclipsed structure
being about 0.036 eV more stable at the DFT-B3LYP level. In the present work, we
optimized the more stable ground state conformation; this structure was then used as
a starting point to optimize the geometry in the excited states. Geometry optimization
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Fig. 9.5 Visualization of the
PtPOP complex with the
atomic labels used to
indicate the structural
parameters reported in
Table9.2. The molecular
structure represented here
corresponds to the geometry
fully optimized in the ground
state with GPAW

was carried out until the maximum force on all individual atoms was less than 0.02
eV/Å. Fully-optimized geometries were confirmed to be true minima of the potential
energy surface by inspection of the frequencies of a normal mode analysis.

The S0 and T1 geometries optimized in ASE and GPAW were compared to opti-
mized geometries obtained using a standard implementation of KS DFT within the
Gaussian09 program package [14]. The calculations in Gaussian09 were performed
by Postdoc Mátyás Pápai in our group. In these calculations, the unrestricted formal-
ism was used to describe the excited state. We employed the Ahlrichs TZVP [15]
all-electron basis set for the P, O, H atoms, and the quasirelativistic effective core
potential (ECP) def2-ECP [16] in conjunction with the valence electrons Ahlrichs
def2-TZVP [17] basis set for the Pt atoms. Two different exchange-correlation func-
tionals were used: the BLYP functional, which was also utilized in the GPAW calcu-
lations, and the commonly employed hybrid functional B3LYP [18, 19], to test the
effect of including a portion of exact Hartree-Fock exchange energy on the structure
of the complex. Also for these calculations, we checked the frequencies of a normal
mode analysis to confirm that the fully-optimized geometries were true minima.

Potential energy curves in vacuum, in a particular electronic state, were computed
by scanning along relevant coordinates, starting from the fully-optimized geometry
of that state, while relaxing at each step all other degrees of freedom with the same
convergence criteria as used in the full geometry optimizations in ASE.

9.3.1 Optimized Structures

Relevant structural parameters of the S0 state of PtPOP (see Fig. 9.5 for a depiction
of the molecule) together with the differences with respect to the S1 and T1 structures
obtained from the geometry optimizations in vacuum, are given in Table9.2.

The ground state is found to have approximate C4h symmetry, with a D4h Pt2P8
core. The largest discrepancy between the S0 structure predicted using GPAW and
the one obtained using more conventional atom-centered basis sets and an ECP for
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Table 9.2 Selected structural parameters for the S0, S1 and T1 states of PtPOP obtained from the
geometries optimized in vacuum at different DFT levels

S0 � (T1 − S0)b � (S1 − S0)

ECP/TZVPa ECP/TZVPa

BLYP
GPAW

BLYP B3LYP BLYP
GPAW

BLYP B3LYP BLYP
GPAW

Bond (Å)

Pt–Pt 3.005 3.091 3.065 −0.211 −0.241 −0.248 −0.205

Pt–P 2.393 2.425 2.399 0.031 0.032 0.019 0.032

P–O(–P′) 1.718 1.711 1.679 0.001 0.002 −0.000 0.001

P· · ·P′ 3.098 3.126 3.084 −0.060 −0.062 −0.067 −0.055

Angles (deg)

P–O–P′ 128.84 131.90 133.38 −4.63 −5.07 −5.39 −4.27

(Pt–Pt–P)α 91.14 90.40 90.23 5.49 5.45 4.42 5.42

(Pt–Pt–P)β 91.08 90.42 90.22 −1.96 −1.28 −0.14 −1.93

P–Pt–Pt–P′ 0.03 0.00 0.01 0.61 0.54 0.36 0.46
aECP and valence electrons basis set used for the Pt atoms
bT1 calculated using unrestricted DFT

Pt with the same exchange-correlation functional, is in the Pt–Pt distance, which is
0.086 Å shorter in the GPAW structure. We note that the GPAW calculated Pt–Pt
distance of 3.005 Å is around 0.09 Å closer to the midpoint of the experimental
range (2.913-2.979 Å) of values found from X-ray crystallography [20–23]. The
differences become smaller in the excited states since the structure calculated with
standard KS DFT experiences a larger Pt–Pt contraction.

As already mentioned before in this thesis, the Pt–Pt contraction in the excited
states is a consequence of excitation of an electron from themetal-metal HOMOanti-
bonding to the metal-metal LUMO bonding orbital. Eventually, the Pt–Pt contrac-
tions from ground to excited state predicted by all different methods are well within
the experimental range (0.19–0.28 Å) of values obtained from Franck-Condon anal-
ysis of the vibronic progression of low-temperature absorption and emission spectra
[10, 24], and X-ray diffraction measurements of crystals [20, 25]. The Pt–Pt bond
in the T1 state is found to be shorter than in the S1 state of ∼0.01 Å from the GPAW
calculations. Indeed, a slightly reduced contraction in the singlet excited state with
respect to the triplet has been inferred experimentally by comparing the wavenum-
bers of the Pt–Pt stretching progression exhibited by the absorption bands of crystal
(n-Bu4N)4[PtPOP] relative to the S1 (145–147 cm−1) and T1 (150cm−1) states [8,
9], and was further confirmed by the DFT calculations performed by Záliš et al.
[26] using the PBE0 functional, which delivered a �(S1 − T1) for the Pt–Pt bond of
∼0.02 Å.

Turning to the other geometrical parameters, themost prominent changes between
ground- and excited-state structures in interatomic distances involving atoms of the
ligands are represented by a lengthening of the Pt–P bonds and by a shortening of
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Fig. 9.6 ThePt2P8 core of PtPOPof the geometries of theS0 andS1 states fully optimized in vacuum
with GPAW. In the ground state, each PtP4 group is in a local square pyramidal geometry and the
core has D4h symmetry. Following excitation to S1, the core distorts towards a D2d conformation,
in which PtP4 moieties are in a quasi-trigonal bipyramidal geometry

the P· · · P′ distances along the Pt–Pt axis, which is, however, much smaller than
the Pt–Pt contraction itself. An elongation of the Pt–P bonds in the excited state
of PtPOP is a well-known prediction of DFT [11]. Since using B3LYP results in a
∼40% smaller elongation, as evident from Table9.2, it seems also to be the structural
effect of excitation that is most sensible to the introduction of exact exchange in the
DFT functional. Apart from that, BLYP and B3LYP predicted structural changes
from ground to excited state agree within 0.007 Å for bond lengths and 1◦ for angles,
while differences in the ground state are all smaller than 2% of the BLYP calculated
values. Therefore, given the similarities between BLYP and B3LYP results in this
case, it was possible to perform the BOMD simulations using the computationally
cheaper GGA functional without considerable loss of accuracy with respect to DFT
with a hybrid functional.

An interesting aspect of the optimized geometry of the excited states that emerges
from inspection of the values of the ∠Pt–Pt–P angles reported in Table9.2 is that
PtP4 moieties do not retain a local square-based planar geometry but slightly distort
towards a quasi-trigonal bipyramidal structure. As a consequence, in the excited
states the symmetry of the Pt2P8 core is lowered to D2d . This is underpinned by the
fact that ∠Pt–Pt–P angles in the excited states do not have the same value, as in the
ground state, where they are approximately 90◦. Instead, one can define ∠Pt–Pt–P
angles involving equatorial and axial P atoms in a local quasi-trigonal bipyramidal
geometry. The distortion is represented in Fig. 9.6, where we have indicated ∠Pt–
Pt–P angles involving equatorial and axial P atoms as α and β, respectively. We will
discuss in more detail this symmetry lowering involving the ligands of the complex
in the next section, where the distortion will be characterized bymeans of PES scans.
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9.3.2 Potential Energy Surfaces

Figure9.7 shows the PESs computed along the Pt–Pt coordinate for all three elec-
tronic states using GPAW with the BLYP functional. As expected, the PESs of T1

and S1 are shifted to shorter Pt–Pt distances with respect to the ground state and
parallel to each other. A feature that, up to now, had only been postulated experimen-
tally based on the similarities between the low-temperature S0 → S1 and S0 → T1

absorption bands [8, 9]. To our knowledge, this is the first time that this experimental
observation is confirmed by aDFT calculation of the S1 and T1 PESs of PtPOP. Given
the close similarities between the electronic structures of d8–d8 complexes [8], we
can argue that also the other members of this class of compounds feature parallel
T1 and S1 PESs. In light of this, the choice of using gradients calculated in the first
triplet state to mimic BO dynamics in S1, as previously done in our group to simulate
by unrestricted DFT the S1 dynamics of a diiridium d8–d8 complex [27], appears
justified, at least for simulations in vacuum.

The relative energies of the singlet and triplet excited states are affected by the
understabilization of the triplet by ∼0.5 eV that has already been noted in Sect. 9.2.
However, since we performed only BOMD simulations in the S1 state for times
considerably shorter than the ISC times observed for PtPOP in water solution, repro-
ducing an accurate energy picture of the lowest triplet excited state was not relevant
for these studies.

We have alreadymentioned that, in the excited states, PtP4 groups of the molecule
arrange according to a local quasi-trigonal bipyramidal geometry. The extent of the
distortion can be quantified by the difference (indicated by �) between ∠Pt–Pt–P
angles involving equatorial and axial P atoms of the local quasi-trigonal bipyrami-

Fig. 9.7 PESs along the
Pt–Pt coordinate computed
in vacuum for the S0, S1 and
T1 states of PtPOP using
GPAW. Open circles
represent the calculated
points, while the lines are
3rd order polynomial fits
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Fig. 9.8 Vacuum PES of the S1 state of PtPOP along the pseudorotation coordinate �. � is the
angle difference defined in the figure. The Pt2P8 core of PtPOP is shown at the symmetric minima
and at the transition state of the potential energy curve. The structure at � = 0 has D4h symmetry
and each PtP4 group is in a local square pyramidal geometry, as in the fully optimized ground-
state molecule. The minima correspond to a Pt2P8 core with D2d symmetry and PtP4 groups in a
quasi-trigonal bipyramidal geometry. Open circles represent the calculated points, while the line is
a cubic spline fit to the data

dal geometry (see Fig. 9.8). To characterize in more detail this structural distortion
involving the ligands, we have computed the PES in the S1 state along the coordi-
nate �. The PES is shown in Fig. 9.8 and clearly reveals the presence of a rotational
barrier between equivalent D2d geometries. The pseudorotation of the P atoms in
each PtP4 group resembles the Berry isomerization mechanism [28] occurring in
trigonal bipyramidal molecules, although the angle ∠(Pt–Pt–P)α does not reach the
120◦ value characteristic of a perfect bipyramidal geometry due to the rigidity of the
P-O-P bridging ligands.

We have investigated the dependence of this prediction of DFT on the choice
of DFT functional. To this end, we have calculated the PES of PtPOP in the S1
state along the pseudorotation coordinate � using �SCF in GPAW with the PBE
functional, which differs fromBLYP in that it does not include empirically optimized
parameters as the latter. The results of the calculation are presented in Fig. 9.9, where
also the PES computed at BLYP level, and already shown in Fig. 9.8, is included. The
two functionals agree in the prediction that structures with PtP4 groups in a quasi-
trigonal bipyramidal geometry are located at energy-minima, although the height of
the barrier for pseudorotation between the two equivalent isomers predicted by PBE
is observed to be almost 4 times smaller than that computed with BLYP.

D2d isomers of transitionmetalM2L8 dimers,where eachML4 is in a local trigonal
bipyramidal geometry and can undergo Berry pseudorotation, are known [29], but
have never been reported before for PtPOP. From the experimental side, Ohashi
and co-workers [20] interpreted the outcome of time-resolved X-ray diffraction
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Fig. 9.9 PESs of PtPOP in the S1 state along the angle difference � defined in figure. The PESs
were computed in vacuum using �SCF in GPAW with the BLYP and PBE functionals by relaxing
at each step all degrees of freedom apart from �. Open circles are the calculated points, while the
lines are cubic spline fits to the data

measurements of crystals assuming D4h symmetry. However, the analysis derived a
large contraction of ∼0.1–0.2 Å of the Pt–P bonds, which is in contrast to the slight
lengthening obtained from all DFT calculations. Moreover, it should be considered
that in crystals there are packing forces and interactions with counterions that might
come into play, which are not taken into account in the calculations of the gas-phase
isolated molecule, making the validity of a direct comparison with experiments dubi-
ous. It is difficult, on the other hand, to explain why previous computational works
where the structure of PtPOP in the triplet state was optimized with unrestricted DFT
without symmetry constraints, have not reported this ligand distortion with symme-
try lowering of the Pt2P8 core. The existence of a local minimum at a geometry
with D2d symmetry for both the T1 and S1 states is supported by all type of DFT
calculations presented here, and was reproduced also by a GGA functional different
than BLYP. In the absence of detailed information about the true nature of reported
T1 geometries in the literature, we speculate that this ligand distortion might have
been overlooked.
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Chapter 10
Computational Details of the QM/MM
BOMD Simulations

10.1 Equilibrium Ground-State Simulations

The optimized geometry of PtPOP in its ground electronic state (S0) was placed
in a cubic simulation box with side length of 35 Å containing TIP4P [1] water
molecules at a density of 1 g/cm3 pre-equilibrated in the NVT ensemble at 300 K.
The total number of solvent molecules, after removing those overlapping with the
solute, was 1383. The QM subsystem was defined to comprise only the complex.
The MM subsystem included the TIP4P water molecules plus four K+ counterions
to neutralize the total charge of the box. Potassium was also used as counterion in
the time-resolved X-ray diffuse scattering (XDS) experiments on PtPOP in water
presented in Chap.7. The counterions were described as point charges, using force
field parameters from Ref. [2]. During the dynamics, the position of each counterion
was restrained to regions of the simulation box outside a sphere centered at the center
of the QM cell by applying the restraint potential shown in Eq. (6.31). The cutoff
radius dpr and the harmonic force constant kpr for the restraint potential were 16 Å
and 500kcal/mol respectively. This choice of dpr and kpr ensured that the atoms of
the complex were at least 12 Å apart from the counterions during the simulations,
as seen from the solute-K+ radial distribution functions (RDFs). The ground state of
PtPOP was described using the BLYP functional, a grid spacing of 0.18 Å, and with
tzp basis set [3] for Pt and dzp [3] for the rest of the atoms. Non-bonded dispersion
and exchange repulsion interactions between the solute and the MM particles were
parametrized through the standard Lennard-Jones (LJ) potential of Eq. (6.5), using
for the atoms of the complex LJ parameters from the universal force field (UFF) [4].

After solvating the complex, the entire boxwas further equilibrated in NVT to 300
K, employing a 1 fs time step until stabilization of the temperature. Thermalization
was realized using the Langevin thermostat implemented in ASE. The thermostat
was applied only to the solvent, while the friction on the atoms of the solute was set
to 0. Periodic boundary conditions were applied according to the minimum image
convention. Stability of the simulations was ensured by constraining all OH bonds
and hydrogen bonds present in PtPOP with the RATTLE algorithm [5]. After the
equilibration, QM/MM BOMD data were collected with 2 fs time step in the NVT
ensemble with the thermostat applied to the solvent, for at least further 25 ps.
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Fig. 10.1 (Left) Equilibration of the instantaneous kinetic temperature of the solvent for a QM/MM
BOMD trajectory of PtPOP in the ground state. The vertical grey dashed line represents the time
at which the trajectory was considered equilibrated. The average instantaneous kinetic temperature
〈Tk〉 and the variance σTk were computed over the equilibrated part of the trajectory. (Right) The
distribution of instantaneous kinetic temperatures from the equilibrated trajectory as compared to
a Gaussian probability distribution with mean 〈Tk〉 and variance calculated according to Eq. (10.3)

Figure10.1 (Left) shows the equilibration of the instantaneous kinetic temperature
of the solvent in the course of the simulation. The instantaneous kinetic temperature
Tk at a time t during a trajectory propagation of a collection of NMM atoms can be
calculated from:

Tk(t) = 1

(3NMM − Nc) kb

NMM∑

k=1

Mk | Ṙk(t) |2 (10.1)

where Nc is the total number of constrained internal degrees of freedom (DOF). For
NH2O TIP4P water molecules NMM = Nc = 3NH2O, since in the TIP4P force field
all three internal DOF of H2O are constrained. Therefore, Eq. (10.1) expressed as a
function of the total number of water molecules in the simulation box becomes:

Tk(t) = 1

6NH2Okb

NMM∑

k=1

Mk | Ṙk(t) |2 (10.2)

The average instantaneous kinetic temperature 〈Tk〉 over the equilibrated part of
the trajectory, which is taken at times t > 7 ps, was equal to 300.7 K. Figure10.1
(Right) compares the distribution of instantaneous kinetic temperatures from the
equilibrated part of the trajectory with the theoretical probability distribution for a
canonical ensemble at 〈Tk〉. The theoretical distribution was obtained as a Gaussian
function with variance calculated from 〈Tk〉 according to Boltzmann statistics for the
NVT ensemble [6]:

σ 2
NVT(Tk) = 2〈Tk〉2

3NMM − Nc
= 〈Tk〉2

3NH2O
(10.3)
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The perfect agreement between the simulated and theoretical distributions indicates
that the simulations are able to reproduce the correct fluctuations of the instantaneous
kinetic temperature for an NVT ensemble.

From the equilibrated part of the trajectory, 48 more parallel QM/MM BOMD
production runs were started at 0.5 ps intervals, to further accelerate the data collec-
tion process. When starting each trajectory, the velocities of the atoms in the solvent
were randomized by imposing a Maxwell-Boltzmann distribution at 300 K, to min-
imize the correlation between them. Overall, the equilibrated trajectories amounted
to 460 ps and were obtained over ∼9750 h of CPU time, corresponding to ∼21 h per
picosecond.

To assess the impact of constraining all OH and hydrogen bonds in the complex
on equilibrium properties and dynamics, a single trajectory with increased mass for
all hydrogen atoms but no constraints on the degrees of freedom of the solute was
produced. The average of the main structural parameters of the complex and the
Pt–Pt oscillating frequency obtained from this trajectory were found to be negligibly
different from those obtained when employing RATTLE constraints for the OH and
hydrogen bonds.

10.2 Nonequilibrium Dynamics Due to Laser Excitation

The structural and solvation dynamics following photoexcitation by an ultrashort
pulse of PtPOP in water is investigated using classical trajectories of the nuclei
obtained by computing energy and forces at QM/MM level. The basic principle we
base our study on is that individual trajectories or ensembles of them generated or
selected from already available equilibrium BOMD ensembles, according to out-of-
equilibrium initial conditions, reflect the laser-induced dynamics of the system.

The ground-state simulations detailed in the previous section established a large
set of around 230000 equilibrated QM/MM BOMD snapshots collected over a total
simulation time of about 460 ps. Collectively these data add up to an equilibrium
ensemble of ground-state PtPOP configurations in water, from which initial condi-
tions for the nonequilibrium dynamics in the ground and S1 excited states can be
drawn.

Excitation to the S1 state by an ultrashort optical pulsewas described in a picture of
instantaneous promotion of ground-state molecules from the underlying equilibrium
ground-state distribution of Pt–Pt distances (Peq

GS(dPtPt)) to S1 according to a spatial
filtering (SF) approximation [7–11] of the pump-pulse transition. This approximation
takes into account the frequency distribution of the ultrashort pulse but neglects any
effect due to nuclear motion throughout its finite temporal duration. For a Gaussian

pulse ε(t) ∝ e− t2

2τ2 e−iω1t , where ω1 and τ are respectively the center frequency and
temporal width, initial conditions for a set of excited-state trajectories can be sampled
from the (unnormalized) distribution PES(dPtPt, t0) given by:
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PES(dPtPt, t0) = F2(dPtPt)P
eq
GS(dPtPt) (10.4)

In Eq. (10.4), the excitation window F(dPtPt) takes the form:

F(dPtPt) = A exp

[
−τ 2 (�V (dPtPt) − �ω1)

2

2�2

]
(10.5)

where �V (dPtPt) is the potential energy difference between the ground and excited
states. An ultrashort pump pulse burns a hole in the ground-state equilibrium dis-
tribution of Pt–Pt distances. The change in the ground-state distribution Peq

GS(dPtPt)
induced by the pulse, which we will call distribution of the hole, will exhibit peri-
odic motion in the ground-state PESwith the characteristic period of the ground state
[11]. Following Fleming [11], we approximate the distribution of the hole at time
zero Ph

GS(dPtPt, t0)with PES(dPtPt, t0), i.e. we assume that the hole left in ground-state
distribution by the pulse has the same form of the non-stationary distribution created
in the excited state.

The procedure that we used to generate initial conditions for the nonequilibrium
dynamics in the ground and excited states within the SF approximation is the fol-
lowing:

1. Construct �V (dPtPt). The choice of the potentials is not trivial, since the concept
itself of fixed potential energy surfaces is ambiguous in the context of BOMD
simulations in the presence of a solvent (we will examine the assumption of
using fixed potential energy surfaces in the next paragraph). A reasonable choice
is to use the free energy surface of PtPOP along the Pt–Pt coordinate obtained as
potential of mean force (PMF) from equilibrium QM/MM BOMD simulations.
While for the ground state the PMF is readily available from the set of equili-
brated ground-state trajectories, for the excited state the PMF is not known before
performing excited-state QM/MMBOMDsimulations. Establishing a set of equi-
librated excited-state trajectories before the nonequilibriumpropagationwould be
computationally expensive. So, we computed �V (dPtPt) from parameters known
from steady-state and ultrafast optical measurements in solution.

2. Choose the parameters ω1 and τ of the optical pump pulse.
3. Obtain PES(dPtPt, t0) = Ph

GS(dPtPt, t0) from Eqs. (10.4) and (10.5).
4. Propagate �SCF-QM/MM BOMD trajectories in the excited state starting from

an ensemble of ground-state equilibrium configurations reflecting PES(dPtPt, t0).
In the selection of ground-state frames we ensured that they were spaced at least
0.5 ps from each other, such to minimize the correlation between excited-state
trajectories.

5. Remove an ensemble of PtPOPmolecules reflecting Ph
GS(dPtPt,0) from the ground-

state equilibrium ensemble. The remaining ground-state molecules represent a
non-stationary ensemble.
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We established two sets of nonequilibrium ground- and excited-state ensembles
using two different choices of laser parameters. For the first set of initial conditions,
the laser pump pulse was chosen to reproduce as close as possible the experimen-
tal conditions of the pump-probe X-ray diffuse scattering (XDS) measurements of
PtPOP in water presented in Sect. 7.2, in which ground-state dynamics was observed.
The initial conditions for the second set of excited-state nonequilibrium simula-
tions and the corresponding nonequilibrium ensemble of remaining ground-state
molecules employed the parameters of the laser used by van der Veen et al. [12] in
femtosecond transient absorption measurements of the ultrafast excited-state vibra-
tional dynamics of PtPOP in water. In what follows, we examine the details of the
initial conditions of each set of ensembles, and at the end compare them.

The first set of initial conditionswas aimed atmodelling ground-state hole dynam-
ics of PtPOP in water for helping the analysis and substantiating the outcome of the
ultrafast XDS measurements we performed at the LCLS XFEL of Stanford [13, 14].
�V (dPtPt) was taken as the difference between two harmonic potentials with force
constants calculated from the reduced mass of the Pt2 dimer and the vibrational fre-
quencies obtained by van der Veen et al. [12] using femtosecond transient absorption
measurements in water solution, which in wavenumbers are 119 and 149cm−1 for S0
and S1, respectively. For the position of the minima of the potentials, the Pt–Pt dis-
tances of the S0 and S1 gas-phase optimized geometries were used (see Table9.2);
finally, the two potentials were shifted relative to each other such that the energy
difference at the Pt–Pt distance of the optimized ground-state geometry was equal
to 3.35 eV (corresponding to a wavelength of ∼370nm), i.e. the transition energy
at the maximum of the S0 → S1 band of the experimental absorption spectrum in
aqueous solution [13, 15, 16]. The parameters for the excitation field were obtained
from a Gaussian fit to the spectral intensity profile of the pump pulse that was used
in the XDS experiment. Under the assumption that the pulse is Fourier-transform
limited, the fit gave a τ of 20 fs; while for �ω1 we obtained 3.14 eV (∼395nm).
The Gaussian fit to the experimental pump pulse is shown in Fig. 10.2 together with
the experimental absorption spectrum of PtPOP in water [13]. In order to remove
a fraction of ground-state molecules reflecting the experimental excitation fraction
α, the parameter A in the expression of the excitation window, Eq. (10.5), can be
increased until the desired value of α is obtained. Adopting this procedure can lead to
complete depopulation of the ground-state equilibrium distribution at specific Pt–Pt
distances. Since the experiment employed a linearly polarized excitation pulse, we
took into account the fact that the orientation dependence of the absorption probabil-
ity [17] limits the number of molecules that can be excited. Thus, in order to avoid
the unphysical situation of depopulating entirely the ground state at a particular Pt–Pt
distance, the S1 distribution given by Eq. (10.4) was modified according to:

P ′
ES(dPtPt, t0) =

{
1
B PES(dPtPt, t0) if PES(dPtPt, t0) > 1

B P
eq
GS(dPtPt)

PES(dPtPt, t0) if PES(dPtPt, t0) ≤ 1
B P

eq
GS(dPtPt)

(10.6)
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Fig. 10.2 Spectral intensity profiles of the ultrashort laser pulses used to generate initial con-
ditions for two distinct sets of ground- and excited-state QM/MM BOMD nonequilibrium sim-
ulations.“Pump pulse 1” is the pump laser that we have used in the time-resolved XDS XFEL
experiment on PtPOP in water [13, 14] (see Sect. 7.2). “Pump pulse 2” is the pump laser utilized by
van der Veen et al. [12] in femtosecond optical measurements to investigate the vibrational relax-
ation of PtPOP in the first singlet excited state in aqueous solution. Also shown is the absorption
spectrum of PtPOP measured in water [13]

with B > 1, and where the normalization factor for P ′
ES(dPtPt,t0), given by∫

P ′
ES(dPtPt, t0)d(dPtPt), represents the simulated excitation fraction. The parameters

A and B defining the form of P ′
ES(dPtPt, t0) were chosen such to deliver a simulated

excitation fraction close to the estimated experimental α and most closely match the
initial position of the ground-state hole as obtained from a fit of the experimental data
(the results of the fit will be shown in Chap. 12). Then, 50 S1 �SCF-QM/MM trajec-
tories were started from ground-state QM/MM BOMD configurations reflecting the
distribution P ′

ES(dPtPt, t0). The S1 trajectories were collected with a time step of 2 fs,
and keeping the thermostat applied only to the solvent molecules. In total, the tra-
jectories amounted to around 200 ps of �SCF-QM/MMBOMD data. The adequacy
of the approximation of using harmonic potentials in Eq. (10.5) was ascertained
by comparing with P ′

ES(dPtPt, t0) calculated using free energy surfaces obtained as
Morse-potential fits to the potential of mean force (PMF) from the QM/MMBOMD
simulations. The PMF were calculated from the S0 and S1 QM/MM BOMD sets of
data according to:

ws(dPtPt) = −kbT ln(gsPtPt(dPtPt)) (10.7)

where T = 300 K and gsPtPt(dPtPt) is the pairwise Pt–Pt RDF obtained from the
ground- or excited-state simulations. The complete procedure that we followed in
order to obtain P ′

ES(dPtPt, t0) using the PMF was:

1. Compute gGS,eq
PtPt (dPtPt) from the ∼460 ps of ground-state QM/MM BOMD data.
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2. Calculate wGS,eq(dPtPt) from g
GS,eq
PtPt (dPtPt) using Eq.10.7.

3. Compute gESPtPt(dPtPt) from the ∼200 ps of �SCF-QM/MM BOMD data.
4. Compute gES,eq

PtPt (dPtPt) from the ∼200 ps of �SCF-QM/MM BOMD data minus
the first (nonequilibrated) 2.5 ps of each trajectory.

5. Check that gESPtPt(dPtPt) is characterized by an average Pt–Pt distance and width
that are the same as those of gES,eq

PtPt (dPtPt), the two RDFs differing only by the
level of statistical noise. This benchmark justifies the use of gESPtPt(dPtPt) instead
of gES,eq

PtPt (dPtPt) to obtain the PMF of the excited state.
6. Calculate wES(dPtPt) from gESPtPt(dPtPt) using Eq.10.7.
7. Shift wES(dPtPt) such that the energy difference with respect to wGS,eq(dPtPt) at

the minimum of wGS,eq(dPtPt) is equal to 3.35 eV (the position of the maximum
of the S0 → S1 band of the experimental absorption spectrum).

8. Compute P ′
ES(dPtPt, t0) from Eqs. (10.4), (10.5) and (10.6) using the difference

between wES(dPtPt) and wGS,eq(dPtPt).

A negligible difference was found between the P ′
ES(dPtPt, t0) distributions obtained

under the two approximations (use of harmonic potentials versus use of PMF from
the QM/MMBOMD simulations). Indeed, the two PMF are quite harmonic near the
minimum of the S1 surface (see Fig. 10.3), and, moreover, the Pt–Pt distances of the

Fig. 10.3 Initial conditions for the S0 → S1 photoexcitation of PtPOP in water simulated using
the classical SF approximation with the pump pulse used in our ultrafast XDS measurements
[13, 14] (Left), and with the pump pulse employed by van der Veen et al. [12] in transient absorption
measurements in aqueous solution. The black curves are Morse-potential fits to the PMF calculated
using the pairwise Pt–Pt RDFs obtained from the equilibrium QM/MMBOMD data for the ground
state and from the first set of �SCF-QM/MM trajectories for the excited state, as explained in the
text. A definition of the distributions appearing in the figure is provided in the text. The distributions
were smoothed with a cubic smoothing spline
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S0 and S1 gas-phase optimized geometries are found to be very close to the positions
of the minima of the PMF (compare Fig. 10.3 with the values reported in Table9.2).

The second set of initial conditions was chosen with a view to modelling the
ultrafast vibrational relaxation in solution of a non-stationary ensemble of PtPOP
molecules in the S1 state. To achieve this we employed the parameters of the exci-
tation pulse used in the transient absorption setup by van der Veen et al. [12] to
probe the ultrafast excited-state dynamics of the complex in water. ω1 corresponds
approximately to the position of the maximum of the experimental absorption spec-
trum, thus it gives a �ω1 of 3.35 eV (∼370nm); while τ is 60 fs. The spectral
intensity profile of the pulse is reported in Fig. 10.2. For this set of simulations we
could employ the Morse potentials obtained from a fit to the PMF of equilibrium
QM/MM BOMD ground- and excited-state ensembles, as described before. Again,
the two potentials where shifted such that the energy difference at theminimumof the
ground-state potential was equal to 3.35 eV (which, in this case, corresponds to the
center frequency of the excitation pulse). Since the experimental excitation fraction
is not known, we chose A = 1 in Eq. (10.5). Thereafter, PES(dPtPt, t0) was obtained
directly from Eqs. (10.4) and (10.5), and it was used to start 49 S1 �SCF-QM/MM
trajectories. The time step for the propagation was the same as that used in the first
set of simulations.

Table10.1 summarizes the parameters of the pump pulses used in the two different
sets of initial conditions. Table10.1 and Fig. 10.2 highlight the fact that the two pulses
cover two different (narrow) ranges of excitation energies. This has a profound impact
on the initial conditions for the nonequilibrium dynamics, as shown in Fig. 10.3,
where the initial ground- and excited-state distributions, as obtained from the SF
approximation for the two cases, are plotted.

In the case of theXDSXFEL experiment, the spectral intensity profile of the pump
pulse (“pump pulse 1” in Fig. 10.2 and Table10.1) overlaps with the low energy tail
of the absorption spectrum measured in water. Neglecting nuclear motion during the
pulse, as we have done, the ultrashort pulse electronically excites PtPOP molecules

Table 10.1 Parameters of the excitation pulses used to generate initial conditions for the nonequi-
librium QM/MM distributions in the ground and first singlet excited states of PtPOP. ε(t) is the
Gaussian temporal profile of the pulse and |ε(ω)|2 its spectral intensity. �τ and �ω are the full
widths at half maximum (FWHM) of the temporal and spectral intensity profiles, respectively

Pump pulse 1a Pump pulse 2b

ε(t)

τ (fs) 20 60

�τ (fs) 47 140

�ω1 (eV) 3.14 (395nm) 3.35 (370nm)

|ε(ω)|2
��ω (eV) 0.052 (6.6nm) 0.018 (2.0nm)
aPulse used in our time-resolved XDS experiment [13, 14]
bPulse used in the transient absorption measurements by van der Veen et al. [12]
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with a Pt–Pt distance at which the S0 → S1 energy gap is resonant with the excitation
energy. Given the shape and relative position of the S0 and S1 potentials of PtPOP, this
means that the laser is able to excite only ground-state molecules with a short Pt–Pt
distance, close to the position of theminimum of the S1 potential, as can be seen from
Fig. 10.3 (Left). The implication is that the initial distribution prepared in the excited
state is vibrationally “cold”, since it comprises PtPOP molecules with dPtPt close to
the excited-state Pt–Pt equilibrium distance. Therefore, the classical ensemble of S1
trajectories is expected to exhibit little vibrational dynamics. In the ground state, on
the other hand, the excitation window F(dPtPt) of Eq. (10.4) is sufficiently narrow to
burn a localized hole at short distances in the equilibrium ground-state distribution
of Pt–Pt distances. Classically, we expect that the hole will show large amplitude
motion following the excitation event, as an effect of the remaining (non-stationary)
ground-state molecules equilibrating in the S0 potential.

The pump laser used in the optical pump-probe experiments performed by van
der Veen et al. [12] (“pump pulse 2” in Fig. 10.2 and Table10.1) covers a range
of excitation energies around the maximum of the absorption spectrum of PtPOP.
Therefore, it is able to preferentially excite ground-statemolecules close to the bottom
of the S0 potential. The excited-state distribution created initially by the pulse is out-
of-equilibrium with respect to the minimum of the S1 surface, while the ground-state
hole is centered around the equilibrium Pt–Pt distance. Thus, in this case, we expect
the dynamics of the total ensemble (ground- plus excited-state molecules) to be
dominated by coherent motion in the S1 state (as we will see, the ground-state hole
still exhibits a periodic spreading and refocusing, but no coherent vibrations).

The results of the two sets of simulations will be presented, separately, in great
detail in Chaps. 12 and 13.

10.2.1 Considerations on the SF Approximation

In the following, wewill briefly discuss what assumptions are made on the laser exci-
tation process within the spatial filtering (SF) approximation (Eqs. 10.4 and 10.5).
Wewill focus, in particular, on the use of fixed potential energy surfaces when apply-
ing the SF approximation in the context of QM/MMBOMD simulations, presenting
evidence that an alternative method for simulating the transition based on a match
between the instantaneous energy gap and the photon energy does not necessarily
provide more reliable initial conditions for the nonequilibrium dynamics.

The SF approximation has been frequently employed to describe the pump-pulse
transition in simulations of ultrafast pump-probe experiments using classical trajec-
tories [7–11]. It is derived from first-order time-dependent perturbation theory under
two main approximations:

• The transition dipole moment is assumed independent of the nuclear coordinates
of the system in the Franck Condon region (Condon approximation).
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• All kinetic energy operators in the expression of the promoted excited-state wave
function are neglected [7, 9, 10], which means neglecting nuclear motion during
laser excitation. We will consider the effects of nuclear motion during the pulse on
the final outcome of a pump-probe experiment in Chap.12, when we will discuss
the optimal pump-pulse parameters for highlighting ground-state dynamics.

In addition, fixed potential energy surfaces for the ground and excited states are
used to construct the potential energy difference entering the expression of the exci-
tation window (see Eq. 10.5), which implies assuming a one-to-one correspondence
between nuclear coordinates and the potential energy difference. The use of fixed
potential energy surfaces appears to a good extent justified for diatomic molecules
in gas phase or solid matrix, which have been the most common subject of classical
molecular dynamics investigations that used the SF approximation [7, 9, 10]. On the
other hand, in the case of polyatomic molecules in solution, it is clear that fluctu-
ations in the surrounding environment and motion along other coordinates modify
instantaneously the potentials along a particular coordinate [8].

We have investigated this effect by analysing the correlation between the Pt–
Pt distance in PtPOP and the S0 → S1 vertical transition energy in our QM/MM
BOMD simulations. To do so, we have computed the S0 → S1 energy gap for around
110000 QM/MM snapshots from the ∼460 ps of 300K equilibrated ground-state
QM/MMBOMDdata by performing single-point�SCF-QM/MM calculations. The
underlying distribution of instantaneous energy gaps is shown in the right panel of
Fig. 10.4. The solution average S0 → S1 transition energy is equal to 3.24 eV. This
value is only slightly smaller than the computed S0 → S1 vertical excitation energy
in vacuum (3.51 eV, see Table9.1) and within ∼4% of the position of the maximum
of the room-temperature absorption spectrum of PtPOP inwater (∼3.35 eV [15, 18]).
Figure10.4 shows the joint probability distribution of Pt–Pt distances and S0 → S1
energy gaps obtained from the 110000 single-point�SCF-QM/MMcalculations. As
expected, given the relative position of the PMF of S0 and S1 (see Fig. 10.3), there is a
clear tendency towards higher excitation energies for larger Pt–Pt distances.However,
the correlation coefficient computed from the covariance of the two variables, Pt–Pt
distance and energy gap, is equal to 0.62, meaning that there is no sharp one-to-one
correlation between the two parameters. This is further underpinned by the fact that
themean excitation energy for a given Pt–Pt distance (black line in Fig. 10.4) deviates
from the mean Pt–Pt distance for a given energy gap value (red line).

There is an alternative strategy to the SF approximation for describing the pump-
pulse transition in order to generate initial conditions for nonequilibrium classical
distributions. The method consists in selecting ground-state configurations for which
the instantaneous ground to excited state energy gaps are resonant with the photon
energies of the excitation laser (i.e. according to the classical limit of the Franck-
Condon principle [19]). This alternative approach has been used in the past to create
the initial conditions for excited-state MD simulations aimed at modelling ultrafast
pump-probe experiments on diatomics in solid rare gases [20, 21] or bond dynamics
in liquids [8, 22, 23]. In those studies, first a set of ground-state equilibrated trajec-
tories was established, and then configurations to excite from this set were chosen
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Fig. 10.4 Density plot of the joint probability distribution of Pt–Pt distances and S0 → S1 energy
gaps showing the correlation between these two parameters in the QM/MM BOMD simulations.
The vertical excitation energies were computed by around 110000 single-point �SCF-QM/MM
calculations on QM/MM BOMD ground-state configurations. The red and black lines superim-
posed to the bivariate distribution are themean energy for a given Pt–Pt distance, and themean Pt–Pt
distance for a given energy gap, respectively. The panels at the right and upper sides of the density
plot show the projection of the distribution along the energy gap and along the Pt–Pt distance (red
curve), respectively. The upper panel includes, additionally, the PMF of the ground state (black
curve)

according to amatchwith the energieswithin the bandwidth of the excitation pulse. In
most of the cases, the classical propagation and the determination of the resonance
condition were based on fixed potential energy surfaces. Therefore, the approach
employed in most of those studies was very similar to the SF approximation. During
our on-the-fly QM/MM BOMD simulations of PtPOP in water, the potential energy
along the Pt–Pt distance adjusts instantaneously to the environment. Due to the lack
of one-to-one correlation between the Pt–Pt distance and the S0 → S1 transition
energy, as seen before, the result of a selection based on the match between the laser
energy and the S0 → S1 energy gap is expected to be different from the outcome
of the SF approximation. To test this, we have determined the S1 distribution of
Pt–Pt distances (PES(dPtPt, t0)) created by the ultrashort lasers used in the previous
sectionwithin the SF approximation (see Table10.1) by selecting PtPOP ground state
molecules according to their values of instantaneous energy gap. The fixed potentials
employed within the SF approximation have been shifted relative to each other such
that the energy difference at the minimum of the ground-state potential was equal to
the position of the maximum of the S0 → S1 band of the experimental absorption
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Fig. 10.5 Density plot of the joint probability distribution of Pt–Pt distances and S0 → S1 energy
gaps �E(S0 → S1) modified such that the average �E(S0 → S1) is 3.35 eV (the position of the
maximum of the S0 → S1 band of the experimental absorption spectrum). The red and green lines
superimposed to the bivariate distribution are the mean Pt–Pt distance for a given energy gap and the
difference between the S0 and S1 PMF of PtPOP along the Pt–Pt distance (�V (dPtPt)), respectively.
The dashed vertical lines represent the center energies of the pump pulses considered in the present
investigation (pump-pulse parameters are reported in Table10.1)

spectrum (3.35 eV). Thus, in order to enable a comparison between the two different
strategies to draw initial conditions, the distribution of computed S0 → S1 energy
gaps �E(S0 → S1) was modified such to give an average �E(S0 → S1) of 3.35
eV. The bivariate distribution of Pt–Pt distances and modified energy gaps is shown
in Fig. 10.5. Note how the center of the modified bivariate distribution is at 3.35
eV. Then, we computed PES(dPtPt, t0) for the two laser pulses of Table10.1 by first
multiplying the spectral intensity profile of the laser with the bivariate distribution of
Pt–Pt distances and modified energy gaps, and then projecting the resulting bivari-
ate distribution along the Pt–Pt distance. For excitation with “pump pulse 1” (see
Table10.1), we scaled the intensity of the pulse to achieve the experimental excita-
tion fraction, as also done when we have used the SF approximation with this pulse
(see previous section); while, there was no need to rescale the resulting PES(dPtPt, t0)
according to Eq. (10.6), because excitation did not depopulate entirely the ground-
state equilibrium distribution at particular Pt–Pt distances, in this case. The results
obtained using the two pulses are shown in Fig. 10.6, together with the excited-state
initial distributions computed with the SF approximation, and already presented in
Fig. 10.3.

A first, most noticeable difference between the S1 Pt–Pt distance distributions
PES(dPtPt, t0) created using the two different strategies (SF approximation and selec-
tion of instantaneous energy gaps according to the resonance condition) that emerges
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Fig. 10.6 Normalized distributions of Pt–Pt distances created in the S1 state (PES(dPtPt, t0)) using
two different approaches to describe the excitation of PtPOP by two ultrashort laser pulses. The
black curves were obtained by filtering the bivariate ground-state distribution of Pt–Pt distances and
S0 → S1 energy gaps with the spectral intensity profiles of the lasers. The red curves were obtained
within the SF approximation (see Eqs. (10.4) and (10.5), and Fig. 10.3), using the difference between
the S0 and S1 PMF of PtPOP along the Pt–Pt distance (�V (dPtPt)). See Table10.1 for the parameters
of the pump pulses

from Fig. 10.6, is that the distributions created according to the second strategy are
much broader than the one obtained with the SF approximation. The reason for this
result is understood by observing from Fig. 10.5 that the range of Pt–Pt distances at
the center energies of the pump pulses (dashed horizontal lines) are very disperse
due to the lack of perfect correlation between the Pt–Pt distance and the vertical
transition energy. Hence, at the energies covered by the laser pulses, the PtPOP
molecules that are eligible to be selected for excitation according to the resonance
condition will display a large distribution of Pt–Pt distances. On the other hand, the
SF approximation filters the ground-state equilibrium distribution of Pt–Pt distances
according to a dPtPt-dependent window function (see again Eqs. 10.4 and 10.5), and
thus selects molecules in configuration space based on the fixed potential energy dif-
ference, regardless of the instantaneous energy gap. In this latter picture, the excited
distributions will have a broad width in the space of S0 → S1 transition energies.
A second difference between the predictions of the two approaches is represented,
in the case of “pump pulse 1”, by a shift of the position of the distribution excited
using the instantaneous energy gaps to shorter Pt–Pt distances, closer to the value of
the average Pt–Pt distance of the ground state (2.99 Å), with respect to PES(dPtPt, t0)
predicted by the SF approximation. To understand the origin of the discrepancy, we
have plotted, additionally, in Fig. 10.5 the mean Pt–Pt distance for a given value of
energy gap (red line) and the difference between the S1 and S0 PMF used within the
SF approximation (�V (dPtPt), green line). The intersection between the red line and
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Fig. 10.7 PtPOP absorption spectrum simulated as a DOS histogram of�SCF-QM/MMcalculated
S0 → S1 energy gaps and according to the classical reflection principle (see Eq. 10.8), as compared
to the experimental spectrum of PtPOP in water [13]. Also shown are the Gaussian spectral intensity
profiles of the laser pulses used in the present work to set up initial conditions for nonequilibrium
dynamics of PtPOP in water

the horizontal dashed line representing the center energy of “pump pulse 1” (3.14
eV) gives the center of the distribution of Pt–Pt distances that can be excited by the
laser, in the picture based on the selection of instantaneous energy gaps. While in
the case of the SF approximation, the molecules that are promoted to the excited
state have a Pt–Pt distance close to the intersection between the horizontal dashed
line and the green line representing �V (dPtPt). Thus, it is apparent that, due to the
disruption of the correlation between S0 → S1 energy gaps and Pt–Pt distances, the
average Pt–Pt distance at the energy of the pulse is closer to the average ground-state
Pt–Pt distance than the Pt–Pt distance where �V (dPtPt) is equal to the pulse energy,
explaining the shift of the position of PES(dPtPt, t0) for “pump pulse 1”. For “pump
pulse 2”, instead, the resonance condition is satisfied at the center of the ground-
state distribution, where �V (dPtPt) and the red line coincide. As a consequence, the
excited Pt–Pt distance distributions are centered both at the average Pt–Pt distance
of the ground state, for the two different method of selecting initial conditions.

A question that arises now is which one of the two strategies for setting up the
initial conditions for the nonequilibrium dynamics provides a better approximation
to the pump-pulse transition. To shed light on this question, we compare in Fig. 10.7
the experimental absorption spectrum of PtPOP inwater [13] to the spectra simulated
as a density-of-states (DOS) histogram from the (modified) distribution of S0 → S1
energy gaps and using the classical reflection principle [24]. The classical reflec-
tion principle states that the energy dependence of the probability of absorption of
a photon reflects the equilibrium nuclear distribution in the ground state in a direct
way, and is valid within the same set of assumptions as those used to derive the
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SF approximation. The absorption cross section of PtPOP was computed, according
to the classical reflection principle, from the 300K equilibrium ground-state distri-
bution Peq

GS(dPtPt), using the following relation:

σ(E) ∝ 1

| �V ′(dPtPt) | P
eq
GS(dPtPt) (10.8)

where �V ′(dPtPt) is the derivative of the difference potential between ground and
excited states, which was obtained from the S0 and S1 PMF of PtPOP along the Pt–Pt
coordinate. The spectrum calculated in this way gives the probability of absorption
at the different Pt–Pt distances within the SF approximation.

There is a good agreement between the spectrum simulated using the reflection
principle and the experimental spectrum, especially on the red side, while at higher
energies, for which the underlying potentials are more anharmonic, the experimental
spectrum is broader. On the other hand, the DOS histogram clearly overestimates the
width of the spectrum over the entire range of energies. The distribution of instan-
taneous S0 → S1 energy gaps, from which the DOS histogram is constructed, was
obtained from single point �SCF-QM/MM calculations on ground-state QM/MM
BOMD configurations. In these calculations, the geometry of the solute and all sol-
ventmolecules are kept fixed (frozen-field approximation). It can be argued, however,
that the Pt–Pt oscillators should only experience an effective field during the rapid
fluctuations induced by the environment [25]. The failure of the frozen-field approxi-
mation to correctly describe such phenomena ofmotional narrowing that are active in
solution [8, 25] provides an explanation of the discrepancy between the experimental
absorption spectrum and the spectrum simulated as a DOS histogram.

Figure10.7 shows also the spectral intensity profiles of the two laser pulses whose
parameters were utilized in the present study to set up initial conditions for the
nonequilibrium dynamics of PtPOP in water. It is seen that, at the range of energies
covered by the pulses, the spectrum predicted by the classical reflection principle
is in very good agreement with the experimental absorption spectrum. It can be
argued, on the basis of this comparison, that the ground-state equilibrium distribution
Peq
GS(dPtPt) directly reflects via the potential difference �V (dPtPt) the probability of

photon absorption over the range of energies covered by the pump pulses. Therefore,
using Peq

GS(dPtPt) and �V (dPtPt) within the SF approach, as done in the present work,
represents a reasonable approximation of the excitation process. On the other hand,
due to effects of motional narrowing, a direct correlation between the distribution
of instantaneous energy gaps calculated in the frozen-field approximation and the
absorption spectrum is difficult to establish. Thus, a selection of initial QM/MM
BOMD configurations based solely on a match of the energy gap between ground
and excited statewith the resonant energies of the excitation laser does not necessarily
imply an improvement of the accuracy of the initial conditions.
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Chapter 11
Equilibrium Solution Structure

11.1 PtPOP Equilibrium Structure

Table11.1 reports bond lengths and angles of PtPOP obtained as averages over ther-
mally equilibrated S0 and S1 QM/MM BOMD data in water. The ground-state equi-
librium QM/MMBOMD simulations were described in Sect. 10.1. Equilibrium data
for S1 were extracted from the two sets of excited-state trajectories (see Sect. 10.2)
after removing the first (nonequilibrated) 2.5 ps from each of them, which gave a total
of around 80000 BOMD snapshots, covering 160 ps. That the molecule vibrationally
equilibrates after the first 2.5 ps during the S1 QM/MM BOMD simulations will be
shown in Chap.13.

The only structural parameter of the S1 state of PtPOP in aqueous solution that
has ever been determined experimentally is the equilibrium Pt–Pt distance. This
bond length has been obtained in the course of the present PhD project by E. Biasin
[5] from a fit to the time-dependent XDS difference scattering signal presented in
Sect. 7.2 (the data are shown in Fig. 7.3). For this analysis, the signal was fitted at
a pump-probe time delay of 4.5 ps, when both the ground- and excited-states of
PtPOP have reached vibrational equilibrium. In Sect. 11.3 of the present chapter,
we will have a closer look at how the simulations that we have performed helped
guiding the analysis of the data. The experimentally determined Pt–Pt contraction
for S1 was found to be equal, within the accuracy of the experiments, to that obtained
by time-resolved X-ray scattering measurements in water by Christensen et al. [3]
for the T1 state. Based on this, and given the very close similarity between the S1
and T1 vacuum structures (see Table9.2), we test the same holds in solvent, namely
that the solution structures of the S1 and T1 states are virtually the same. Thus, in
Table11.1 we carry out a comparison between calculated thermal averages for S1 and
corresponding experimental solution data available for T1. These include the Pt–Pt
and P· · · P′ distances measured in the aforementioned X-ray scattering experiment
performed by Christensen et al. [3], and the Pt-P bond lengths derived by van der
Veen et al. [4, 6] from a fit to time-resolved X-ray absorption spectra in ethanol.

Parts of this chapter have been reproduced with permission from Ref. [1], https://doi.org/10.1021/
acs.jpcc.8b00301. Copyright 2018 American Chemical Society.
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Table 11.1 Structural parameters of PtPOP inwater obtained as averages over equilibriumQM/MM
BOMD data for the S0 and S1 states, and comparison with available solution experimental valuesa.
The MD average was carried out over a total simulation time of ∼460 ps for S0 and of ∼160 ps
for S1

S0 �(S1 − S0) � (T1 − S0)

Calc [2] Exp [3, 4] Calc Exp [5] Exp [3, 6]

Bond (Å)

Pt–Pt 2.99 2.98b −0.20 −0.24(4)b −0.24(6)b

Pt-P 2.33 2.32(4)c 0.01 – 0.010(6)c

P· · ·P′ 3.09 2.92b −0.01 – 0.00(8)b

Angles (deg)

(Pt–Pt–P)α 91.2 – 5.0 – –

(Pt–Pt–P)β 91.2 – −0.3 – –
aSimulation results for S1 are compared to experimental values obtained for T1 when experimental
data for S1 are not available
bObtained in water by X-ray scattering experiments [3, 5]
cObtained in ethanol by X-ray absorption measurements [4, 6]

The calculated thermally averaged bond distances and the experimental values
agree within the uncertainties of both experiments and simulations. From a compari-
son with the corresponding structural parameters of the gas-phase optimized geome-
tries, we notice that the average Pt–Pt distance in solution is only 0.01 Å shorter,
while the solvent affects much more significantly structural parameters involving
ligand atoms. This is particularly evident for the Pt-P bonds, which in the ground
state are found to be ∼0.06 Å shorter than in the isolated optimized structure and
in S1 experience a ∼70% smaller elongation. In addition, despite the fact that the
shortening of the Pt–Pt distance due to excitation is found to be the same in vacuum
and solution, the P atoms follow the Pt atoms in the contraction along the Pt–Pt axis
to only 0.01 Å, ∼80% less than in gas phase. As a side note, we point out that differ-
ences induced by the presence of the solvent on these structural parameters of PtPOP
are larger than the changes brought by the use of a hybridDFT functional like B3LYP,
as can be seen by comparing the values reported for the Pt-P and P· · · P′ distances in
Tables 9.2 and 11.1. This indicates that there would be no significant advantage in
employing the computationally more expensive B3LYP functional instead of BLYP
in the QM/MM BOMD simulations.

An analysis of the average values of the ∠Pt–Pt–P angles reveals that also in
solution, PtP4 units are distorted towards a quasi-trigonal bipyramidal local geometry
with respect to theground state (though the angle difference� found in solvent is∼5◦,
around 2◦ smaller than for the optimized S1 vacuum geometry). This is an important
result, because it hints at the fact that a direct S1 → T1 ISC mechanism might be
active in solution, which could explain the ∼3000-times faster ISC rates exhibited
by PtPOP with respect to its perfluoroborated analogue [7, 8], where pseudorotation
of the bulkier and more rigid ligands is less likely. Indeed, the role of structural
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Fig. 11.1 (Left) Potential ofmean force (PMF) calculated from thePt–Pt radial distribution function
(RDF) according to Eq.10.7, together with the relative thermal probability distribution (Peq

GS(dPtPt))
from the QM/MM BOMD equilibrium simulations of PtPOP in water. The red line defines the
average thermal energy available to the system at 300 K. (Bottom, right) Fourier transform of the
Pt–Pt oscillations in the simulations

distortions in lowering the D4h symmetry of the Pt2P8 core of PtPOP, thus promoting
direct SOC between S1 and T1, has been often hypothesized but so far never proven
[7–10].

11.1.1 Thermal Equilibrium Properties of the Ground State

Here, we expand on the thermally averaged structural and dynamical properties of
the Pt–Pt distance in the ground state. We show that the large amount of QM/MM
BOMD data collected (∼460 ps) permits a statistically robust characterization of the
distribution of Pt–Pt distances and frequency of the Pt–Pt oscillations in equilibrium
with a thermal bath of solvent molecules at 300 K.

Figure11.1 (Left) shows the 300K distribution of Pt–Pt distances for the ground
state of PtPOP (Peq

GS(dPtPt)), together with the free-energy surface obtained as poten-
tial of mean force (PMF) (see Eq.10.7). This equilibrium distribution has been used
in Sect. 10.2 (see Fig. 10.3) to set up the initial conditions for the nonequilibrium
BOMD simulations that will be presented in the next chapters. The thermally aver-
aged Pt–Pt distance of PtPOP in aqueous solution from our simulations is 2.99 Å,
while he experimental value obtained from X-ray scattering measurements in water
is 2.98 Å [3]; therefore, the discrepancy between simulations and experiment is less
than 1%.

The PMF shown in Fig. 11.1 (Left) has been fitted to a Morse potential, which
has the form [11]:

V (dPtPt) = De

[
1 − e−a(dPtPt−dPtPt,0)

]2
(11.1)
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Fig. 11.2 Comparison
between the (classical)
equilibrium distribution of
Pt–Pt distances obtained
from the ground-state
QM/MM BOMD simulations
of PtPOP in water and the
quantum thermal density
computed according to Eq.
(11.2) with the parameters
described in the text

where De and dPtPt,0 are the depth and Pt–Pt distance at the potential minimum,
respectively, and a = √

k0/2De with k0 the force constant at the minimum of the
potential well. Figure11.1 (Left) reports the Morse potential resulting from the fit.
We have constructed a quantum thermal density as an incoherent sum of vibrational
eigenstates of this Morse potential, according to:

�GS =
Ns∑
i=1

pi |χi 〉 〈χi | (11.2)

where |χi 〉 are the first Ns eigenstates with eigenvalues εi , and the probabilities pi

are the Boltzmann factors for the canonical ensemble (pi = 1∑Ns
i e−βεi

e−βεi , with

β = (kbT )−1).
In the computation of �GS according to Eq. (11.2), Ns was chosen to include all

states with a probability bigger than 0.1%, as determined using the first 250 eigen-
values, and the temperature T was 300 K, the same temperature set for the Langevin
thermostat applied to the water molecules in the QM/MM BOMD simulations. The
eigenstates and corresponding eigenvalues of the Morse potential were obtained
using theMatlab programWavePacket [12]. Figure11.2 shows a comparison between
the equilibrium distribution of Pt–Pt distances obtained from the QM/MM BOMD
simulations and the quantum density �GS at 300 K. The comparison indicates that
the classical probability distribution of Pt–Pt distances approximates very well the
quantum density. From the comparison we can deduce that: (i) the QM/MM BOMD
simulations correctly reproduce the fluctuations of the canonical ensemble, and (ii)
at 300K the predictions of classical statistical mechanics with respect to the Pt–Pt
oscillators are close to the quantum-classical limit. To understand qualitatively the
latter observation we can compute the energy spacing of a harmonic potential with
a frequency given by the force constant of the Morse potential of Fig. 11.2 and the
reduced mass μPtPt of Pt2 (νPtPt = 1/2π

√
k0/μPtPt). The frequency of the Morse
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potential is, in terms of wavenumbers, ν̃PtPt = 124 cm−1. This gives βhνPtPt = 0.59;
and we can see that at 300K we are already close to approach the high temperature
limit (for a harmonic oscillator, classical and quantum statistical mechanics give the
same prediction for βhνPtPt 	 1).

We now turn to examine the dynamical properties of the Pt–Pt oscillator in the
ground state. From theMorse-potential fit to the PMF a low degree of anharmonicity
of the Pt–Pt stretching vibration can be deduced. The degree of deviation from
harmonicity was estimated by calculating the anharmonicity constant xe according
to the expression [11]:

xe = hν

4De
= �

4De

√
k0

μPtPt
(11.3)

Using the parameters of theMorse-potential fit, a value of xe = 1.5 · 10−3 is obtained,
which is noticeably small if compared, for example, to that of a very harmonic
diatomic system like I2 (2.8 · 10−3 [13]). The position of the minimum of theMorse-
fitted potential at 2.98 Å, a Pt–Pt distance only 0.01 Å shorter than the thermally
averaged value, also points to a strong harmonicity. Finally, we have obtained the Pt–
Pt vibrational frequency as themaximumof aFourier transform (FT) of the oscillating
Pt–Pt distance in the simulations. The FT is reported in Fig. 11.1 (Bottom, right). To
obtain it, we have divided each trajectory into chunks of 4 ps, performed an FT
for each of them, and then averaged the results. The oscillation periods obtained
from the frequency of the Morse potential, reported before, and the position of the
maximum of the FT are 270 and 275 fs, respectively. The small deviation between
the two values is a further confirmation of the harmonicity of the Pt–Pt potential. We
also note that the computed periods deviate by less than 4 % from the vibrational
period of 281 fs obtained by van der Veen et al. [14] using femtosecond transient
absorption measurements in aqueous solution. More importantly, for the purpose
of the interpretation of the XDS XFEL data measured during the present project
(see Sect. 7.2), the simulated Pt–Pt oscillation period is found to be very close to
the period (∼285 fs) obtained from the position of the maximum of an FT of the
time-dependent XDS signal (see Fig. 7.3).

11.2 Solvation Shell Structure

Figure11.3 shows the Pt-Hsolvent and Pt-Osolvent radial distribution functions (RDFs)
computed from the equilibrated QM/MM trajectories in S1 and S0 using a bin size of
0.01 Å for the radial sampling. The large amount of statistics allows to fully resolve
the first four peaks of solvent coordination around the Pt atoms. The position of water
molecules within each of the coordination peaks with respect to a single Pt atom is
illustrated schematically in Fig. 11.3 (Right).

The first peak in the two RDFs (areas of the RDFs highlighted in blue in Fig. 11.3
(Left, bottom) are indicative of the presence of strong H-coordination of solvent
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Fig. 11.3 (Left) Pairwise Pt-solvent RDFs sampled from the equilibrated part of the QM/MM
trajectories in S0 and S1. The gray vertical line indicates the extent of the first coordination peak.
(Right) Division of the solvation shell around PtPOP into regions from the point of view of a Pt
atom. The colors of the different regions match the colors of the areas of the peaks of the Pt-Osolvent
RDFs

molecules at the Pt-ends of the complex. The second coordination peaks (yellow
water molecules) span Pt-H solvent distances between∼4.5 and∼5.5Å and Pt-Osolvent

distances between∼5.5 and∼6.5Å. These peaks comprise water molecules that are
found to lie mainly off-axis with respect to the Pt–Pt direction. Due to the presence
of two Pt atoms, and given the symmetry of the complex, water molecules of the
second peaks make up also the third peaks of the RDFs (5.5Å < dPtH < 7.0Å and
6.5Å < dPtO < 8.3Å). This is better illustrated by the water molecules highlighted
in purple in the schematics of Fig. 11.3 (Right). That water molecules belonging to
the second (and third) peaks do not take up the space along the Pt–Pt direction is
supported by the fact that the distance between the second and third peaks (∼1.5 Å)
is less than the intramolecular Pt–Pt distance.

In the excited state, neither the position of the first nor the second peak changes,
which means that the two shells must draw closer in conjunction with the Pt–Pt con-
traction. This is further supported by a shift of the third peaks to shorter distances as
this results from the Pt atoms finding themselves closer to water molecules located
on the opposite sides of the complex, in the excited state. The second most notable
change in the RDFs is represented by a slightly reduced coordination in the first
peaks. If the extent of the first coordination shell is taken up to the first minimum
of the Pt-Osolvent RDF, at 3.85 Å, we can quantify the coordination with the running



11.2 Solvation Shell Structure 149

coordination number at this distance. It follows that the Pt-Osolvent coordination num-
ber in the first shell is around 0.77 for PtPOP in the S1 state, only ∼0.1 smaller than
in the ground state.

11.2.1 Orientational Distribution in the First Coordination
Peak

We have analysed the orientation of the water molecules in the first peak in the Pt-
Hsolvent and Pt-Osolvent RDFs in order to gain insight into the nature of the coordination
at the open axial site of the complex.

Figure11.4 shows the probability distribution function of two key angles in the
solute-solvent geometry sampled within the first coordination peak. Both distribu-
tions indicate a preference for linear geometry, or axial coordination, where the O-H
donor bond points along the Pt–Pt axis of the complex. This is further supported by
the distance between the first peak of the Pt-Hsolvent RDF and that of the Pt-Osolvent

RDF, which is roughly 0.96 Å, corresponding to the TIP4P O-H bond length.
The angular distributions, indicative of the extent of axial coordination, are largely

unalteredwhenPtPOP is in theS1 excited statewith respect to the ground state. There-
fore, water molecules within the first peak of the RDFs seem to retain the preferential
axial orientation after electronic excitation of the complex. Experimentally, emission
spectra of PtPOP are found to be independent of the solvent [15]. The finding that
electronic excitation does not lead to anymajor restructuring in the local organization
of solvent molecules surrounding the complex is in agreement with this experimental
observation and points to the fact that this might be the case also for other types of
solvents.

Fig. 11.4 Probability distributions of solute-solvent angles involving water molecules in the first
coordination shell of the Pt atoms in PtPOP as defined by the extent of the first peak of the Pt-Osolvent
RDF in Fig. 11.3. The color code for the distributions is the same as in Fig. 11.3. The sampled angles
are shown schematically using a QM/MM BOMD snapshot selected from one of the S1 �SCF-
QM/MM trajectories (for visualization purposes hydrogen atoms of PtPOP are omitted). These
angles are related to the orientation of water molecules with respect to the Pt–Pt axis of the complex
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This behaviour is in sharp contrast to the solvent shell response observed for
photoexcitation of the d8-d8 complex [Ir2(dimen)4]2+ (where dimen is diisocyano-
para-menthane) by ultrafast X-ray scattering measurements in acetonitrile [16]. In
that case, the effect of electronic excitation was found to be a loss of coordination
of methyl groups with the open coordination site at the metal atoms, followed by
reorientation of the solvent molecules to specifically coordinate Ir atoms with the
more electronegative cyano endings. In both complexes ametal-metal bond is formed
after photoexcitation, thus effectively shifting electron density from the outer side
of the planar faces of the molecules to the inside (see Sect. 9.2). Although different
solvents are involved in the two cases, the different response of coordinating solvent
molecules can be rationalized in terms of different contributions of atomic orbitals
localized on ligand atoms in the formation of theLUMO.Aswehave seen in Sect. 9.2,
in PtPOP the LUMO has a largely predominant pz character; as a consequence, in the
excited state, a considerable portion of the electron density still localizes in outward
position with respect to the planar PtP4 faces. This, in turn, permits the Pt atoms
of the complex to retain their ability to coordinate the more electropositive part of
the solvent and it is probably connected to the previously mentioned excited-state
reactivity towards H atom donors. For [Ir2(dimen)4]2+, on the other hand, previous
DFT calculations [7] have highlighted a substantial involvement ofπ∗

z (C≡N) orbitals
in the formation of the LUMO, shifting more electron density from the outer sides
of the molecule and making the excited state a stronger Lewis acid.

11.3 Guiding the Analysis of the XDS Data

11.3.1 Choosing a Structural Model for the Solute

The strategy outlined in Sect. 8.2 for analysing time-dependent differenceX-ray scat-
tering signalsmeasured in solution reckons on a proper choice of single geometries to
model the scattering due to changes in the distances between atoms of the solute (the
�Ssolu(q, tp) term). The standard procedure used by the group of our experimental
collaborators consists in utilizing DFT-optimized geometries. Geometry optimiza-
tion is carried out in vacuum or by taking into account solvent effects using a con-
tinuum solvent model [16, 17]. To model structural changes after photoexcitation in
the ground or excited state of the solute, usually sets of structures are generated by
varying key structural parameters while optimizing at each step the geometry in the
state where dynamics is expected [16]. Thus, the model approximates the scattering
from time-dependent distributions of atomic positions within the ensemble of sol-
vated solute molecules with the scattering of single geometries relaxed with respect
to fixed PESs, those predicted by DFT in vacuum or in an implicit solvent model.
Here, we test the choice of two types of vacuum structures for the analysis of the
PtPOP XDS data.
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Fig. 11.5 Simulated isotropic difference scattering signal of PtPOP calculated using Eq. (8.5)
from: the RDFs obtained from the S0 and S1 QM/MM equilibrium data (blue line), the optimized
geometries of S0 and S1 (yellow line), and the optimized geometry of S0 and an excited state
described by the optimized geometry of S0 with the Pt–Pt distance of the S1 optimized geometry
(red line). All geometry optimizations were performed in vacuum. The excitation fraction α in Eq.
(8.5) was equal to 0.026. This value of α was determined at a later stage of the analysis

The first choice is akin to the one just illustrated: both ground and excited states
of the complex are represented by the respective geometries optimized in vacuum
using GPAW with the BLYP functional. The structural parameters of these geome-
tries are reported in Table9.2. DFT calculations with BLYP in vacuum predict a
relatively large, ∼0.03 Å elongation of the Pt-P bond lengths, and a large, ∼0.06 Å
contraction of the P· · · P′ distances compared to the QM/MM BOMD simulations
(see Table11.1). On the other hand, the QM/MMBOMD simulations and the geom-
etry optimizations in vacuum give the same value for the Pt–Pt contraction in the
S1 state. Therefore, a second choice of structures that we test is the following: the
ground state is represented by the ground-state geometry optimized in vacuum in
GPAW, while the excited state is obtained from the latter by varying exclusively the
Pt–Pt distance, without relaxing the forces with respect to the S1 PES.

Figure11.5 shows the isotropic difference scattering signal calculated (i) using
Eq. (8.5) with the solute-solute RDFs extracted from the S0 and S1 QM/MMBOMD
equilibrium data (blue line); (ii) using the same equation but applied to the ground-
and excited-state gas-phase optimized geometries of the complex, in which case
Eq. (8.5) reduces to a sum of terms equivalent to the Debye formula Eq. (8.14),
(yellow line); and (iii) using the gas-phase S0 optimized geometry and an excited-
state structure obtained from the first by setting the Pt–Pt distance to that of the
optimized excited-state geometry, while leaving all other DOF unchanged (red line).

The comparison illustrates that the choice of a gas-phase excited-state structure
with the same structural parameters as the ground state, apart from the Pt–Pt dis-
tance, approximates very well the scattering obtained fromQM/MMBOMD thermal
distributions. The result can be explained as the consequence of the convolution of
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at least three factors: (i) the Pt–Pt contraction predicted by gas-phase and solution
calculations is the same, (ii) the structure of the ligands is unchanged in S1 with
respect to S0 in the QM/MM BOMD simulations, and (iii) the spread that character-
izes the QM/MM BOMD distributions is found to be relatively small. With respect
to the last point, we note that the width of the Pt–Pt thermal distribution shown in
Fig. 11.1 is only around 0.07 Å, while significant changes in the difference scattering
from broadened distributions with respect to delta functions are expected for widths
at least an order of magnitude bigger [18]. The small spread in the distributions is
caused by the stiffness of the Pt–Pt bond and by the rigidity of the cage of ligand
atoms. Given the above, the use of scattering signals from single gas-phase structures
appears justified for the analysis of the time-resolved XDS data of PtPOP in water.
However, one should be careful with the choice of the structures. This is exemplified
by the yellow curve in Fig. 11.5 obtained from the gas-phase optimized geometries
in both the ground and excited states. The curve shows significant deviations from
the scattering signal from QM/MM BOMD distributions. The differences are due
to the gas-phase geometry optimization in the excited state predicting much larger
changes in the structure of the ligands than those obtained from the calculations in
solution.

In conclusion, the set of molecular structures used to model the solute difference
scattering signal (�Ssolu(q, tp)) in the PtPOP XDS data, was obtained by varying
the Pt–Pt distance of the ground-state geometry of the complex optimized in vac-
uum with GPAW, from 2.700 to 3.300 Å in steps of 0.001 Å, while keeping all the
other atoms fixed. In this modelling framework, photoinduced structural changes in
the structure of the solute are parametrized through only the Pt–Pt distance. Possi-
ble contributions to the signal arising from intramolecular changes other than the
Pt–Pt bond contraction were found within the uncertainties of the measured signal,
as described in Ref. [5]; a further confirmation that, in solution, structural changes
affecting the ligands of PtPOP after photoexcitation are neglegible as compared to
the Pt–Pt contraction.

11.3.2 Determining the Solute-Solvent Term

Figure11.6 (Left) shows the isotropic difference scattering signal of PtPOP inwater at
a pump-probe time delay of 4.5 ps fittedwith amodel that includes only the�Ssolu0 (q)

and�Ssolv0 (q) terms.�Ssolu0 (q) used in the fit was obtained from the set of structures
generated as explained in the previous paragraph. The fit has been performed by
Postdoc E. Biasin among our experimental collaborators. The residuals of such a
fit are usually interpreted, to a first approximation, as the signature of changes in
solute-solvent distances that are not accounted for by only including �Ssolu0 (q) and
�Ssolv0 (q) [16].

To substantiate the latter hypothesis we have computed �Ssolu−solv
MD (q) according

to Eq. (8.8) using the solute-solvent RDFs obtained from the equilibrated QM/MM
trajectories for S0 and S1. The result is shown in Fig. 11.6 (Right), together with the
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Fig. 11.6 (Left) Isotropic difference scattering signal of PtPOP in water at a pump-probe time
delay of 4.5 ps fitted with a model including only the solute and solvent terms. (Right) Isotropic
difference scattering signal simulated using the solute-solute (blue line) and solute-solvent (magenta
line) equilibrium QM/MM RDFs for S0 and S1. The simulated solute-solvent term has been scaled
by the experimental excitation fraction of 0.026. Differences between the fit to the experimental
data and the simulated �Ssolu0,MD(q) arise mainly from the contribution due to heating of the bulk
solvent

Fig. 11.7 Comparison
between the residuals of the
fit of the isotropic difference
XDS signal of PtPOP in
water at 4.5 ps, shown in
Fig. 11.6 (Left), and the
solute-solvent difference
scattering signal simulated
from QM/MM BOMD
equilibrium distributions

scattering from the solute (�Ssolu0,MD(q)) calculated using the solute-solute RDFs, and
already presented in Fig. 11.5; while Fig. 11.7 directly compares the residuals of the
fit with �Ssolu−solv

MD (q) scaled by the experimental excitation fraction α (α was equal
to 0.026 and was obtained at a later stage of the analysis).

Indeed, the similarities between �Ssolu−solv
MD (q) computed from the QM/MM

BOMD data and the residual are remarkable. Once again, the interplay between
simulations and experiments is mutually beneficial. First of all, a �Ssolu−solv

0 (q, tp)
term could be included in the fit of the time-dependent isotropic XDS signal, accord-
ing to Eq. (8.19), thus improving themodel. Secondly, thematch between simulations
and experiments corroborates the picture of (small) solvent shell changes drawn from
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the QM/MMBOMD simulations, and illustrated in the previous section. The final fit
at 4.5 ps, including the �Ssolu−solv

0 (q, tp) term, delivered the value of 0.24±0.04 Å
for the Pt–Pt contraction already reported in Table11.1, as well as the value of 0.026
for α.
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Chapter 12
Coherent Vibrational Dynamics
in the Ground State

In the present chapter, we scrutinize the set of S1 nonequilibrium �SCF-QM/MM
BOMD data and the S0 nonequilibrium ground-state distributions of PtPOP in water
established for a choice of pump-pulse parameters closely recreating the experi-
mental conditions of the pump-probe X-ray diffuse scattering (XDS) measurements
performed at LCLS. The details of the XDS experiments, realized during the present
PhD project, can be found in Sect. 7.2; while the procedure for setting up the initial
conditions for the dynamics has been described in Sect. 10.2.

Figure12.1 shows the out-of-equilibriumdistributions of Pt–Pt distances in S0 and
S1 at time zero, and at times corresponding to half (∼138 fs) and twice (∼550 fs) the
vibrational period of the ground state, respectively. The figure includes also the time-
dependent hole distribution of Pt–Pt distances representing depletion of the ground-
state ensemble, obtained as the (unnormalized) distributionof remainingground-state
molecules minus the ground-state equilibrium distribution. In Fig. 12.2 we show the
full time evolution of the excited-state (blue density plot) and ground-state hole (red)
distributions of Pt–Pt distances, together with the respective instantaneous Pt–Pt
average distance (black curves).

Within the approximations used to set up the initial conditions (see Sect. 10.2),
photoexcitation by the ultrashort pump laser creates a localized distribution in the
excited state and a complementary localized hole in the ground-state equilibrium
distribution. The nonequilibrium distributions, after time zero, start moving and
spreading, equilibrating on the respective potential surfaces. Since the initial dis-
tributions are localized in out-of-equilibrium position, Pt–Pt distances within them
start oscillating in phase, meaning that the vibrational motion is coherent. For the
hole, this is a reflection of the remaining ground-state molecules vibrating coherently
in the ground-state potential following dPtPt-dependent depletion of the ground-state
ensemble by the laser. Coherent vibrations occur with average periods of ∼276 and
∼227 fs for the ground and excited state, respectively. The period of ∼276 fs for S0
is virtually identical to the one found from fitting the potential of mean force (PMF)
of the equilibrium ground state distribution with a Morse potential (see Sect. 11.1),
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Fig. 12.1 Time-dependent S0 and S1 QM/MMdistributions of Pt–Pt distances simulating dynamics
following excitation by a laser with the parameters of the pump pulse used in the time-resolved
XDSmeasurements on PtPOP in water. Shown are the distributions of the excited state (shaded blue
areas), the remaining ground-state ensemble (red curves), and the ground-state hole (shaded red
areas). For each state, the relative distributions are plotted at time zero, and at times after excitation
corresponding to half and twice the vibrational period of the ground state. The excited-state and
ground-state hole distributions, integrating to the simulated excitation fraction, are magnified for
better visualization. All distributions were smoothed with a cubic smoothing spline

pointing, once again, to harmonicity of the Pt–Pt vibrations. The value obtained for
the excited state is in very good agreement with the 224.5 ± 0.1 fs period observed
by van der Veen et al. [2] in femtosecond optical measurements in water employing
an excitation wavelength of 370nm.

Thephoton energyof the excitation pulse ensures that the excited-state distribution
is created very close to the equilibrium Pt–Pt distance in the S1 state. Thus, the
photoexcited molecules experience a small gradient along the Pt–Pt coordinate in the
excited state, and the amplitude of the coherent vibrations are consequently small, as
seen from Fig. 12.2(Top). The hole, on the other hand, starts from a position far from
the equilibriumground-state Pt–Pt distance and, therefore, undergoes large amplitude
vibrations. This is the basis for the qualitative (and classical) understanding of the
observation of only ground-state dynamics in the time-resolved XDS data of PtPOP
in water presented in Sect. 7.2. In Fig. 12.3(Left), we have plotted the variation of the
average Pt–Pt distance of the full simulated ensemble of PtPOPmolecules computed
from:

< dPtPt(t) > =
∫

dPtPt
[
P ′
ES(dPtPt, t) + Peq

GS(dPtPt) − Ph
GS(dPtPt, t)

]
d(dPtPt)

=
∫

dPtPt
[
P ′
ES(dPtPt, t) + P r

GS(dPtPt)
]
d(dPtPt) (12.1)
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Fig. 12.2 Density plots of the time-dependent Pt–Pt distance distributions from the nonequilibrium
�SCF-QM/MMtrajectories in S1 (Top) and S0 nonequilibriumhole distributions (Bottom) obtained
following photoexcitation of PtPOP in water by an ultrashort pulse selectively depleting the ground-
state ensemble at short dPtPt. The distributions were smoothed with a cubic smoothing spline. The
superimposed black curves represent the respective instantaneous average Pt–Pt distances

Fig. 12.3 Evolution of the Pt–Pt average distance computed from the ground- and excited-state
time-dependent distributions of Pt–Pt distances (Left), and its FT (Right) showing peaks at the two
vibrational periods characteristic of motion in S0 (276 fs) and S1 (227 fs)
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where both P ′
ES(dPtPt, t) and Ph

GS(dPtPt, t) integrate to the simulated excitation frac-
tion, and P r

GS(dPtPt, t) is the distribution of remaining ground-state molecules. Con-
sistent with the fact that the excited state is characterized by a smaller Pt–Pt equi-
librium distance with respect to the ground state, we find that there is an overall
decrease in the average Pt–Pt distance after excitation. Figure12.3(Right) shows that
the Fourier transform (FT) of < dPtPt(t) > delivers the periods of both the ground
and excited states. The peak of the FT associated to the period of vibrations in S1
has a significantly smaller intensity than the peak of the S0 period, an indication of
the predominance of ground- over excited-state dynamics.

12.1 The Optimal Pump-Pulse Duration

Let us expand a bit on the conclusion that we have reached in the previous section
regarding the prevalence of ground-state hole dynamics with respect to excited-state
dynamics. In the following considerationswe shall assume the pump pulse is Fourier-
transform limited, implying that its temporal and spectral profiles are related through
a Fourier transform.

In the classical picture that we have adopted so far, an ultrafast probe can clearly
detect dynamics in the ground state only if the excitation pulse creates a narrow,
localized hole in position space. In our case, this was allowed by a long enough
pulse, such that its frequency spread, determining the spread of the distribution of
Pt–Pt distances that can be excited (according to the window function of Eqs. (10.4)
and (10.5)), was sufficiently smaller with respect to the width of the absorption
spectrum (see Table 10.1 and Fig. 10.2). In this picture, we have neglected motion
of the ground-state molecules during the pulse. Molecules moving in and out of the
resonance region would smear the initial distribution of the hole. As the duration of
the pulse increases, the smearing becomesmore ample. A limiting case is approached
when the pulse duration becomes equal to half the vibrational period of the ground
state, because in this casemolecules from all parts of the ground-state distribution can
enter the resonance condition; as a result, the dynamics in the ground state is washed
out. On the other hand, for too short pulses, the spread of excitation frequencies
becomes so large that the resonance condition is satisfied at all Pt–Pt distances, so the
dynamics is smeared out anyway. The optimum pulse duration for clearly observing
ground-state dynamics lies in the middle of these two limiting conditions. Based on
these considerations, Fleming et al. [3, 4] define the optimum pulse duration as the
middle of the interval 1/�νabs < �τ < TGS/2, where �νabs is the frequency spread
of the absorption spectrum and TGS is the ground-state vibrational period. In the case
of the pump pulse used in the XDS experiments on PtPOP, the duration of the pulse
�τ , as quantified by the full width at half maximum (FWHM) of the temporal laser
profile, is ∼50 fs (see Table 10.1), while the experimental 1/�νabs and TGS/2 are,
respectively, ∼20 fs (FWHM of the spectrum reported in Fig. 10.2) and ∼140 fs.
Therefore, the pulse duration lies very close to the middle (∼60 fs) of the interval
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1/�νabs < �τ < TGS/2. So, the experiments employed pump-pulse frequency and
duration that, in this classical picture, are optimal for enhancing ground-state hole
dynamics.

Obviously, the finite duration of the pulse has an effect also on the amplitude of the
coherent oscillations in the excited state. The initial distribution will be broadened
more, and hence the coherent dynamics will be smeared out faster, in the electronic
state in which motion happens more rapidly. For PtPOP, the S1 state has a higher Pt–
Pt stretching frequency than the ground state. Therefore, we expect that the smearing
due to the finite pulse duration is more significant for S1 than for S0. This could be a
plausible explanation of why the experimental data contain no trace at all of excited-
state dynamics (see FTs in Fig. (7.3)), while the simulations predict the presence of
a (although small) contribution from dynamics in S1.

12.2 Comparison with the Fit of the XDS Data

Figure12.4 (Top) shows the results of the fit of the isotropic difference scattering
signal from the PtPOPXDS data in terms of the best-fit Pt–Pt distance of the ground-
state hole as a function of time. The fit has been performed by E. Biasin and K.
Haldrup [1] employing the model presented in Sect. 8.2 (see especially Eq. (8.21)
and related discussion), describing the hole with the set of single vacuum ground-
state structures generated as explained in Sect. 11.3. The time-dependent dPtPt could
be fitted with an exponentially damped sine function multiplied with a step function
centered at t = 0 and convolutedwith aGaussianwith awidth of∼60 fs, representing
the Instrument Response Function (IRF) of the experiment. The fitting function is
also shown in Fig. 12.4(Top). The fit delivered a period of ∼284 fs and a decay time
of the coherent oscillations of ∼1.7 ps. Figure12.4(Bottom) shows the same type
of fit as performed on the average Pt–Pt distance obtained from the time-dependent
simulated hole distributions convoluted with the same IRF as employed in the fit
of the experimental data. From this, we obtain a period of 271 fs, which agrees
to within 5% with respect to the experimental period. The coherence decay from
the simulations, on the other hand, is found to be around two times faster than
from the experiments. We argue that the discrepancy could be a consequence of
the simulations slightly overestimating the anharmonicity of the Pt–Pt vibrations.
Indeed, the oscillation period of the simulated average dPtPt hole distance changes
by around 20 fs from the first oscillation to the oscillations at times longer than 1.5
ps; while no appreciable variation in the Pt–Pt vibrational period could be observed
from the data. Another noticeable discrepancy is represented by a reduced amplitude
of the first two oscillations in the Pt–Pt distance determined from the structural fit of
the data with respect to the simulated dPtPt hole distance. This has been interpreted as
an indication of the presence of multi-photon excitation of PtPOP in the experiments.
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Fig. 12.4 Comparison between the time dependent Pt–Pt distance of the ground-state hole deter-
mined from the structural fit of the isotropic difference XDS signal (Top), and the same parame-
ter obtained from the nonequilibrium QM/MM hole distributions convoluted with the IRF of the
experiment (Bottom). Both experimental and simulated dPtPt have been fitted with an exponentially
damped sine function multiplied with a step function centered at t = 0 and convoluted with a Gaus-
sian IRF (black continuous curves). The analysis of the experimental data has been performed by
E. Biasin and K. Haldrup and is presented in Ref. [1]

12.3 Absorption or Raman?

It might appear surprising that, in discussing ground-state coherent vibrational
dynamics induced by an ultrashort optical laser, we have not appealed to the so-called
resonant impulsive stimulated Raman scattering (RISRS) process [3, 5–7]. RISRS
is, usually, invoked to explain photoinduced vibrational dynamics in the ground state
from a quantum mechanical viewpoint [2, 3, 8]. The quantum mechanical view-
point is based on stationary vibrational eigenstates, and thus pictures ground-state
dynamics in the energy space. The ground-state equilibrium ensemble is represented
by a thermal density matrix defined as an incoherent sum of stationary eigenstates
(see Eq. (11.2)). In this quantummechanical picture, during interaction with an opti-
cal laser, two concomitant processes are in play: absorption and the RISRS process.
Absorption transfers population from the thermally populated vibrational eigenstates
of the ground state to the excited state. This event cannot explain coherent motion in
the ground state, since the eigenstates do not acquire any time dependence after they
have been depopulated, they remain stationary. Ground-state coherent oscillations
must arise due to RISRS, from a quantum mechanical viewpoint. RISRS transfers
population, during the pulse, from the excited state back to the ground state, thus
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leading to the formation of a coherent sum of stationary states, i.e. a wave packet.
Such a wave packet is non-stationary and will move on the ground-state potential
surface with the characteristic period of the ground state.

The classical picture of amoving hole localized in position space, originating from
selective absorption of Pt–Pt distances, which we have used to interpret coherent
ground-state dynamics, is only apparently incompatible with the picture offered
by quantum mechanics. As explained by Fleming et al. in seminal works [3, 4],
even though the classical picture has no authority to describe what happens during
interaction with the laser pulse, it implicitly incorporates the combined effects of
absorption and RISRS in the description of the resulting ground-state dynamics.
These authors have shown that the vibrational dynamics in the ground state described
using the two pictures can be surprisingly similar, especially at high temperature,
whenmany vibrational eigenstates of the ground state are initially populated. In some
limiting cases, the classical and the quantum mechanical viewpoints give essentially
identical results, since they use two different ensembles with the same densitymatrix.
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Chapter 13
Dynamics of Excited-State Bond
Formation

In the present chapter, we describe the analysis of the second set of nonequilibrium
ground-state distributions and�SCF-QM/MM trajectories of PtPOP in water. These
were produced using the parameters of the pump pulse employed in the transient
absorption setup that allowed van der Veen et al. [2] to probe the ultrafast vibrational
dynamics upon excitation into S1 of PtPOP in water. These excited-state simulations
were primarily aimed at (i) characterizing the coherence decay of the Pt–Pt vibrations
in S1 in water, (ii) elucidating structural distortions involving the ligands during the
excited-state dynamics and (iii) assessing whether the ultrafast relaxation is exclu-
sively governed by specific solute-solvent interactions, as suggested in Ref. [2], or
whether energy-accepting modes in the complex are also playing a role as mediators
in the transfer of energy to the solvent, as hypothesized in Ref. [3]. To address the last
point we have performed a vibrational analysis of the �SCF-QM/MM trajectories
according to the method illustrated in Sect. 6.2.2 of the theoretical and computational
methods part of the present thesis. The content of this chapter is included, with minor
variations, in Ref. [1].

Due to the vast amount and statistical variability of parallel processes playing
out in solution, extracting clear indications about the most likely paths of energy
relaxation from a BOMD-generated out-of-equilibrium solution ensemble can be
arduous if not impracticable at all. In fact, the interplay between anharmonic cou-
plings and stochastic events can lead to incoherent processes, making the monitoring
of average dynamical properties useless, while, at the same time, extrapolation of
ensemble trends from the behaviour of a few individual uncorrelated trajectories
can be dangerous, due to statistical bias. For this reason, we have performed addi-
tional �SCF-QM BOMD simulations of an isolated gas-phase PtPOP molecule in
S1 with the aim to gain preliminary insights into the excited-state intramolecular
energy flow and, thus, facilitate the interpretation of the vibrational analysis of the

Parts of this chapter have been reproduced with permission from Ref. [1], https://doi.org/10.1021/
acs.jpcc.8b00301. Copyright 2018 American Chemical Society.
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S1 �SCF-QM/MM trajectories. The�SCF-QMBOMDsimulations in vacuumwere
performed by propagating the system with velocity Verlet with an integration time
step of 1 fs. To allow a time step of 1 fs, all O-H bonds and hydrogen bonds present in
PtPOP were constrained with the ASE implementation of RATTLE [4], as done for
all QM/MM BOMD simulations performed in the present work. Likewise, the com-
plex was described using GPAW with BLYP. During the dynamics, the translational
and rotational degrees of freedom (DOF) were removed at each step by projecting
out the total linear and angular momenta, respectively.

In the next section we explain how the vibrational velocities needed for the gen-
eralized normal mode analysis, illustrated in Sect. 6.2.2, were obtained from the
solution-phase and vacuum trajectories. Section13.2 is dedicated to presenting the
results of the vacuum simulations; while Sect. 13.3 deals with the QM/MM BOMD
simulations.

13.1 Extracting the Body-Fixed-Frame Velocities

Generalized normal modes and corresponding velocities were computed for the
PtPOP complex from both gas-phase and solution-phase trajectories. To perform
the analysis, the cartesian velocities without contributions from translation and over-
all rotation of the molecule are needed.

For the gas-phase simulations, since we have removed the total linear and angular
momenta at each step of the propagation, the body-fixed-framevelocitieswere readily
available. For the solution-phase trajectories, where it was not possible to separate
out translation and overall rotation of the solute during the �SCF-QM/MM BOMD
propagation, the body-fixed-frame velocities Vp to be used in (6.34) were obtained
from the cartesian velocity vectors Ṙa(t) by an a posteriori procedure. First of all, we
required that the origin is at the molecule’s center of mass, i.e.

∑Nn
a MaRa(t) = 0

and
∑Nn

a MaṘa(t) = 0, where Nn is the number of atoms in PtPOP, to separate the
translation. Afterwards, we applied a rigid rotation to align all frames to a reference
structure:

R′
a(t) = A(t)Ra(t) (13.1)

where the rotation matrix A(t) was computed using the Kabsch method [5], which
minimizes the root-mean-square deviation (RMSD) between the instantaneous struc-
tureR′(t) and the reference frame. Finally, we assumed the overall rotational energy
and internal kinetic energy of the molecule to be completely separable, such that the
total kinetic energy is given by:

Ek(t) = 1

2
Ṙ2

CM(t)
Nn∑

a=1

Ma + 1

2

Nn∑

a=1

Ma
(
ωr(t) × R′

a(t)
)2 + 1

2

Nn∑

a=1

MaV2
a(t) (13.2)
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where RCM(t) is the translating position of the origin of the system of axis with
respect to the fixed laboratory system and ωr(t) is the apparent angular velocity
obtained from the instantaneous moment of inertia and angular momentum of the
molecule (ωr(t) = I−1(t)

∑Nn
a R′

a(t) × Ṙ′
a(t)); and calculated the body-fixed-frame

velocities according to:

Va(t) = Ṙ′
a(t) − ωr(t) × R′

a(t) (13.3)

When multiple trajectories were available, the average in Eq. (6.34) to compute the
covariance matrix K was carried out over time and trajectories.

The Python script used to extract the body-fixed-frame velocities of PtPOP at
each step of the �SCF-QM/MM trajectories is provided in AppendixA.

13.2 Gas-Phase Vibrational Dynamics

We have performed two different types of �SCF-QM BOMD simulations of S1
PtPOP in vacuum. The initial gas-phase structures utilized in the two simulations are
shown in Fig. 13.1.

In the first simulation (simulation (I)), a single S1 trajectory was started from a
structure optimized in vacuum in the S1 state with respect to all DOF except for the
Pt–Pt distance, which was set at the value of the ground-state structure optimized in
vacuum using GPAW with BLYP (3.005 Å, see Sect. 9.3). At the beginning of the
simulation, all atomic momenta were equal to 0. The trajectory was then propagated

Fig. 13.1 The initial PtPOP structures used in the two �SCF-QM BOMD simulations in the S1
excited state (ES). (Left) Simulation (I) was started from the gas-phase geometry optimized in
S1 with the Pt–Pt distance constrained to the Pt–Pt distance of the gas-phase ground-state (GS)
optimized geometry of the complex (3.005 Å). (Right) Simulation (II) was started from the gas-
phase ground-state optimized geometry. The structures are drawn with the Pt–Pt axis oriented
horizontally to highlight that Pt2P4 groups in (I) and (II) are in a quasi-trigonal bipyramidal and
square-based planar geometry, respectively
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for 16 ps with time step of 1 fs. While this choice of initial conditions is far from
being representative of the state created by excitation with an ultrashort laser, it
nevertheless provides a useful means for more easily identifying vibrational modes
of the molecule that couple more strongly to the Pt–Pt stretching mode, since at the
beginning of the dynamics almost all excess potential energy will be concentrated in
this mode.

In a second vacuum �SCF-QM BOMD simulation (simulation (II)), we have
propagated a single S1 trajectory starting from the optimized geometry of the ground
state. With respect to the SF approximation used to set up initial conditions for the
nonequilibrium �SCF-QM/MM BOMD simulations (see Sect. 10.2), this second
choice of initial conditions corresponds to a CW (infinitely long) pump pulse, i.e.
the excitation window of Eq. (10.5) is a delta function (this is the Bersohn-Zewail
model, see for example Ref. [6]). This simulation was aimed at producing a picture
of the dynamics that is closer to the events that take place in an ultrafast pump-probe
experiment than the one that emerges from the first simulation. Total propagation
time and time step were the same as those of the�SCF-QMBOMD run started from
a relaxed S1 geometry with the Pt–Pt distance of the ground state.

13.2.1 Analysis of the Energy Drift

Figures13.2 and 13.3 analyse the energy drift in the two different vacuum�SCF-QM
BOMD simulations of PtPOP in S1.

Figure13.2 refers to the run started from a geometry with the Pt–Pt distance
of the vacuum ground-state optimized geometry and all other DOF relaxed in

Fig. 13.2 Time dependence of the total potential and kinetic energies of PtPOP in the gas-phase
�SCF-QM BOMD simulation (I) (see Fig. 13.1). The black curve represents the evolution of the
total energy obtained as the sum of the potential and kinetic energies (uses the blue energy scale)
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Fig. 13.3 Time dependence of the total potential and kinetic energies of PtPOP in the gas-phase
�SCF-QMBOMD simulation (II) (see Fig. 13.1). The black curve is the instantaneous total energy
(potential plus kinetic, uses the blue energy scale)

S1 (simulation (I)). Figure13.3 refers to the simulation started from the geometry
optimized in vacuum in the ground state (simulation (II)).

In both cases, the total energy (potential plus kinetic) is satisfactorily stable
throughout the entire simulation time of ∼16 ps. For the first simulation, at the
end of the run the energy drift, quantified by the deviation of the instantaneous
total energy from the value at t = 0, is equal to 1.3 × 10−2 eV (3.4 × 10−4 eV per
atom), corresponding to a root-mean-square error (RMSE) of 7.7 × 10−3 eV. For
the second simulation, the maximum energy drift in total energy is −0.9 × 10−2 eV
(−2.4 × 10−4 eV per atom and RMSE of 4.7 × 10−3 eV).

13.2.2 Interplay Between Pinch, Twist and Breathing

We start by examining the trajectory from simulation (I) (see Fig. 13.1).
The Pt–Pt stretching mode takes up alone almost all excess vibrational energy

at the beginning of the dynamics. This is apparent from Fig. 13.4, which reports at
different intervals of time during the simulation the percent fraction of average total
energy (kinetic plus potential) for the four modes that are found to have the largest
average kinetic energy over the entire simulation time and for the sum of the rest.

The average total energy for each mode was calculated from the virial theorem
as twice the average of the kinetic energy over intervals of 300 fs. The four selected
modes are depicted in terms of generalized normal mode displacement vectors in
Fig. 13.5. The figure also shows the Fourier transform (FT) of the autocorrelation
function Cp(t) of the mode velocities for each mode p. These were calculated from:

Cp(t) = 〈
Q̇ p(0)Q̇ p(t)

〉
(13.4)
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Fig. 13.4 Time evolution of the total energies (kinetic plus potential) of selected vibrational modes
and the sum of the rest as obtained from a generalized normal mode analysis of the gas-phase
S1 trajectory from simulation (I). In total, the modes extracted from the vibrational analysis after
removing the translations and overall rotations, and taking into account the constraints enforced on
the positions of the hydrogen atoms during the dynamics, were 92. The total mode energies were
averaged over time intervals of 300 fs and expressed as a percentage of the total average vibrational
energy. See Fig. 13.5 for a depiction of the four selected modes

The positions of the FT peaks represent the characteristic vibrational frequencies of
the modes.

The mode with character of Pt–Pt stretching is indicated as “pinch”. Initially in
the dynamics, this mode takes up to almost 90% of the total vibrational energy. After
around 6 ps, the portion of energy shared by the pinching mode has decreased by
around 95% of the initial value. Of this, ∼80% has flowed into 87 modes, which
seem to be activated simultaneously and at the same rate, with none of them showing
particular preference for overtaking the excess Pt–Pt vibrational energy;while around
20% has been transferred to a single mode with main character of ligand twist (twist
1). Thereafter, a significant portion of the energy flow is directed towards the other
two remaining modes (twist 2 and breathing), which, thus, seem to be activated
rather sequentially after the activation of twist 1. The interplay between the four
main modes identified in the vibrational analysis manifests itself in the evolution
of the respective kinetic energies, as illustrated in Fig. 13.6. In particular, the strong
coupling between the pinching mode and twist 1 is evident from the fact that while
the kinetic energy of the twist 1 mode is at a maximum, around 6–7 ps, the kinetic
energy of the pinch has reached a minimum, and after that has a small increase at
the expense of the kinetic energy accumulated in twist 1. The same is true at early
times in the dynamics for the pinching and breathing modes. In fact, at times earlier
than 1 ps, kinetic energy is seen to rapidly flow in and out of the breathing mode,
matching a local minimum in the evolution of the kinetic energy of the pinch.
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Fig. 13.5 The four main generalized normal modes involved in the gas-phase S1 dynamics of
PtPOP, and the FTs of their velocity autocorrelation functions. The position of the maximum of the
FT of a mode gives the characteristic frequency of that mode
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Fig. 13.6 Instantaneous kinetic energy of the four main modes of a generalized normal mode
analysis of PtPOP along a vacuum trajectory in S1 where almost all excess vibrational energy is
initially stored along the Pt–Pt stretching coordinate (simulation (I)). The energies of the twist 2
and breathing modes are shifted upwards for better clarity. All modes are visualized with the help
of displacement vectors in Fig. 13.5

To shed light on the origin of the couplings between these vibrational modes, an
analysis in terms of their characteristic frequencies (see Fig. 13.5) andmain structural
distortions involved is needed. The Pt–Pt pinching period of 242 fs is in satisfactory
agreement with the ∼230 fs value extracted from the vibrational progression of the
low-temperature S0 → S1 absorption band of crystal (n-Bu4N)4[PtPOP] [7, 8]. As
seen from the depiction of the breathing mode in Fig. 13.5, this mode has partial
character of Pt–Pt stretching, thus explaining why breathing and pinching seem to be
coupled despite the breathing mode has a considerably higher frequency. Regarding
the latter, the period of 140 fs obtained from the maximum of the FT of this mode
is in very good agreement with the experimental 232cm−1 peak (144 fs period) of
the Raman spectrum of PtPOP in the ground state [9], which was assigned to a
symmetric Pt2P8 stretching mode by Gellene and Roundhill [10] on the basis of a
DFT vibrational analysis. Lastly, twist 1 and twist 2 are antisymmetric twistings of
the ligands, where pairs of opposite ligands twist in clockwise and counterclockwise
directions, resulting in variations of the dihedral∠P–Pt–Pt–P′ and in-plane∠P–Pt–P
angles. The strong coupling between the pinching and one of these twisting modes
(twist 1) is readily explained by the fact that they share almost the same frequency.
Indeed, the period of the twisting mode is found to be only ∼8 fs longer than that
of the pinch. A vibrational analysis carried out using the Gaussian09 program on
the ground-state molecule optimized in vacuum with BLYP identified an analogous
normal mode with frequency close to the one of the Pt–Pt stretching mode. Fur-
thermore, the calculated gradients of the dipole moment and polarizability of PtPOP
along this mode are very close to 0, revealing that it is neither IR or Raman active,
thus explaining why it has never been observed experimentally (unfortunately Gel-
lene and Roundhill [10] have reported only DFT-calculated frequencies that could be
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Fig. 13.7 Evolution of the main geometry parameters of PtPOP involved in the�SCF-QMBOMD
vacuum simulation started from a relaxed S1 structure with the Pt–Pt distance of the ground-
state optimized geometry (simulation (I)), and their FT. Changes in the reported parameters and
their frequencies correlate with variations in the kinetic energy of the normal modes presented
in Fig. 13.6. (Top) Evolution of the Pt–Pt distance. (Middle) Instantaneous average P–P distance
between P atoms belonging to opposite ligands. Since P–P symmetric vibrations take part in both
the breathing and pinching modes, fluctuations in this parameter reflect the frequencies of both
modes. (Bottom) Variation of the mean of the ∠P–Pt–Pt–P′ dihedral angles involving ligands that
undergo simultaneous clockwise torsion in the dynamics of the twist 1 and twist 2 modes

compared to experimentally determined IR or Raman transitions, thus a comparison
with their vibrational analysis cannot be made for this mode).

Plots of the evolution of the structural parameters that are mostly involved in the
dynamics of the selected modes, together with their FTs, are shown in Fig. 13.7.
The frequencies of the fluctuations of reported atomic displacements and angles,
and the time evolution of their amplitudes correlate very well with the evolution of
the mode kinetic energies shown in Fig. 13.6, thus further validating the results of
the generalized normal mode analysis. We note that it would be more difficult to
infer the intramolecular energy flow from the local mode picture provided by the
evolution of the amplitudes of oscillations of single structural parameters, when a
priori knowledge of the coupled nuclear motion in the dynamics is lacking. This is
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clear, for example, from the plot of the evolution of the average P–P distance between
P atoms belonging to the same PtP4 group and to opposite ligands, which features
two superimposed oscillations with different frequencies (indeed, the P–P distances
change both in the breathing and pinching modes); as a consequence, the correlation
between the pinching and breathing modes before 1 ps, which shows up clearly in
the evolution of the kinetic energies, is lost, thus highlighting the advantages offered
by a decomposition of the kinetic energy in generalized normal mode contributions
as performed in this work.

13.2.3 The Bending Mode

Figure13.8 shows the evolution of the total energies of five selected vibrational
modes and the sum of the rest obtained from the generalized normal mode analy-
sis performed on the S1 vacuum �SCF-QM trajectory started from the gas-phase
optimized structure of PtPOP in the ground state (simulation (II)). The five modes
were those sharing on average during the simulation the biggest portion of kinetic
energy. The total mode energies were computed using the virial theorem as twice
the average mode kinetic energies over time intervals of 300 fs. The portion of total
energy stored initially in the pinching mode is found to be much smaller than in sim-
ulation (I), being equal to only ∼30%. Notably, an almost equal portion of energy is
shared by a mode that was not activated in in simulation (I) (indicated as “bending”
in Fig. 13.8). All other modes share an equal portion of the remaining excess total
energy. Between ∼1 and ∼7 ps the flow of energy activates the twist 1 and breath-

Fig. 13.8 Time evolution of the total energies (potential plus kinetic) of selected vibrational modes
of PtPOP and the sum of the rest as obtained from a generalized normal mode analysis of the S1
vacuum trajectory from simulation (II) (see Fig. 13.1). The total mode energies were averaged over
time bins of 300 fs and expressed as a percentage of the total average vibrational energy of the
molecule
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Fig. 13.9 Evolution of the vacuum S1 trajectory started from the optimized gas-phase S0 geometry
of PtPOP (simulation (II)) along the coordinates that, at the beginning, share the largest portion
of vibrational energy of the molecule. (Top) Variation of the Pt–Pt distance. (Middle) Evolution
of the pseudorotation coordinate � defined in Fig. 9.8. (Bottom) Visualization of the mode that
corresponds to motion along � and is activated at the beginning of the dynamics together with the
pinching mode

ing modes (see Figs. 13.5 and 13.7 for a characterization of these modes), while at
around 8 ps the mode indicated as “twist 3” has received a considerable portion of
the excess total energy.

The bending mode is depicted in Fig. 13.9 (Bottom), where also the FT of the
autocorrelation of mode velocities is reported. It is characterized by a bending of the
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Fig. 13.10 The twist 3 vibrational mode obtained from a generalized normal mode analysis of
the vacuum �SCF-QM trajectory from simulation (II). (Top) FT of the autocorrelation function of
the mode velocities and representation in terms of generalized normal mode displacement vectors.
The mode involves the simultaneous clockwise and counterclockwise twist of pairs of adjacent
ligands. (Bottom) Variation of the mean of the ∠P–Pt–Pt–P′ dihedral angles involving ligands that
undergo simultaneous clockwise torsion in the dynamics of the mode. The inset shows the FT of
the instantaneous average dihedral angle

ligands corresponding to nuclear motion in the well of the potential energy landscape
along the pseudorotation coordinate �, as defined in Fig. 9.8. This is further con-
firmed by the evolution of � during the dynamics (Fig. 13.9 (Middle)), which shows
a first rapid increase, followed by oscillations with a period of ∼490 fs around a
value of about 7◦, consistent with the shape and the minimum of the potential shown
in Fig. 9.8. The only experimental indication of the existence of a vibrational mode
with a lower frequency than the metal-metal stretching in PtPOP is given by the
presence of a ∼40 cm−1 sideband on the Pt–Pt vibronic progression of low temper-
ature absorption and emission spectra of single crystals of Ba2[PtPOP] [11], which
was attributed to a ligand deformation mode, but was never further characterized.
According to the results of our simulations we assign the observedmode to a bending
of the ligands in a D2d geometry (of the Pt2P8 core), thus reaffirming the conclu-
sion that PtPOP in the excited state does not retain a C4h symmetry, which we have
reached in Sect. 9.3 using PESs calculations.
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Fig. 13.11 Evolution of the instantaneous kinetic energy along the vibrational modes of PtPOP
that undergo the largest displacements during the excited-state �SCF-QM BOMD simulation (I)
started from the ground-state optimized geometry of the complex

The twist 3 mode is characterized in Fig. 13.10. Its behaviour is similar to the
twist 2 mode observed for simulation (I), in that it is activated later in the dynamics,
after about 6 ps, but has a slightly different period (∼107 fs) and character of the
torsional motion.

In Fig. 13.11 we report the evolution of the instantaneous kinetic energy along the
modeswith the largest average kinetic energy over the entire BOMD simulation time.
These include the pinching and bending modes, the breathing and twist 1 modes,
already identified previously, and the twist 3 mode.

The kinetic energy along the bending mode is seen to decrease rapidly in the first
∼3 ps. The pinching mode, instead, has, at ∼3 ps, around the same kinetic energy it
had at the beginning; hence, it is reasonable to assume that a considerable portion of
the excess energy of the bending flows into the pinch. Besides, we observe how, in
this second type of simulation, the coupling between the pinching and the breathing
and twist 1 modes seems to be accentuated. This is apparent from the multiple local
dips that characterize the evolution of the kinetic energy of the pinch in the first∼3 ps,
which are accompanied by variations of the same magnitude but opposite sign in the
energies of the breathing and twist 1 modes. What is new with respect to simulation
(I), in which all coordinates except the Pt–Pt distancewere relaxed before running the
dynamics, is that a non-negligible portion of the total kinetic energy of the molecule
is also stored in the breathing and twisting modes from the very beginning of the
dynamics. Therefore, we conclude that initial activation following the gradients of
the excited-state potential after excitation can induce a stronger coupling of the ligand
deformation modes with the Pt–Pt pinching mode, along the dynamics.
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13.3 Dynamics in Solution

Figure13.12 shows the excited-state distribution of Pt–Pt distances as obtained from
the ensemble of out-of-equilibrium S1 �SCF-QM/MM trajectories at three times:
time zero, after around half the S1 vibrational period, i.e. when the distribution is at
the first inner classical turning point, and at a late time in the dynamics, when the
coherent oscillations cease. While Fig. 13.13 shows density plots of the excited-state
(blue) and ground-state hole (red) time-dependent dPtPt distributions.

The laser pulse parameters used to set up the initial conditions for obtaining the
non-stationary QM/MM ensembles create an initial distribution of Pt–Pt distances in
S1 that is localized within a narrow range of elongated distances with respect to the
excited-state equilibrium position, while leaving a localized hole in the middle of the
ground-state equilibrium distribution. The subsequent dynamics of the full ensemble
is dominated by large amplitude coherent oscillations in S1. Coherent Pt–Pt oscilla-
tions in the excited state are around the equilibrium distance of 2.79 Å, with a period
of∼230 fs, and persist up until around 2 ps. This vibrational period is slightly longer
than the one (∼227 fs, see previous chapter) obtained from the first set of �SCF-
QM/MM trajectories, which were started closer to the bottom of the S1 potential.
Therefore, the potential appears characterized by a slight anharmonicity. No coherent
vibrations can be seen from the plot of the center of the time-dependent ground-state
hole distribution (Fig. 13.13 (Bottom)), as expected, but a periodic spreading and

Fig. 13.12 Time-dependent excited-state distribution of Pt–Pt distances (blue shaded areas) as
obtained from the nonequilibrium �SCF-QM/MM trajectories. The distribution is shown immedi-
ately after excitation, at its first inner turning point and at the end of the nonequilibrium dynamics.
For the ground state, the figure shows the equilibrium distribution (grey line) and the portion of it
remaining after excitation to S1 (red dashed line) at time zero. The excited-state distributions are
magnified for better clarity. All distributions were smoothed with a cubic smoothing spline
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Fig. 13.13 Density plots of the evolution of the excited-state ensemble of Pt–Pt distances (Top)
and of the ground-state hole (Bottom) obtained from QM/MM trajectories reflecting the initial
conditions shown in Fig. 13.12. The distributions were smoothed with a cubic smoothing spline.
The superimposed black curves represent the respective instantaneous average Pt–Pt distances

refocusing is apparent in the first ∼500 fs. Such a “breathing” of the hole distribu-
tion reflects the rigid rotation of the hole about the origin in the phase space [12–14]
(Fig. 13.13).

In Sect. 9.3, we have shown that the Pt–Pt distance is not the only coordinate to
undergo large changes from ground to excited state: the Pt–Pt contraction is accom-
panied by a bending of the ligands, quantified by an increase of the parameter� (see
Fig. 9.8) by ∼5◦. Therefore, we have examined the possibility that the ensemble of
excited molecules displays coherent oscillations also along the coordinate� by plot-
ting the evolution of the distribution of angle differences � (Fig. 13.14). As apparent
from Fig. 13.14, no coherent oscillations are observed for the bending motion, but
rather the trajectories along this coordinate exhibit the behaviour of overdamped
oscillators, reaching the equilibrium value gradually over a time of ∼2.5 ps. This
finding is consistent with the lack of oscillating signatures different from the Pt–Pt
stretching vibrations in time-resolved measurements in solution [2].
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Fig. 13.14 Density plot of the evolution of the distribution of angle differences � extracted from
the ensemble of S1 �SCF-QM/MM trajectories of PtPOP in water. The black line is the mean �

along the ensemble propagation. � has been defined in Fig. 9.8. The distributions were smoothed
with a cubic smoothing spline

13.3.1 Mechanism of Coherence Decay

The coherence time of an ensemble oscillations in solution is determined by two pro-
cesses happening concurrently: relaxation of vibrational energy, and pure dephasing
events, the latter arising from elastic stochastic collisions with the solvent and phase
changes along an anharmonic potential. An extensive discussion of the concepts of
decoherence, vibrational cooling and pure dephasing in solution can be found in
Ref. [15]. We have investigated the causes of decoherence of the Pt–Pt oscillations
in the excited state by quantifying the time scales for coherence decay (τc), vibra-
tional cooling (τe), and pure dephasing (τd ) predicted by the simulations. To obtain
the simulation decoherence time, we have fitted the time-dependent average of Pt–
Pt distances with a periodic monoexponentially decaying function of the form (see
Fig. 13.15).

Fig. 13.15 Time dependence of the average Pt–Pt distance of the nonequilibrium S1 ensemble
(black line) together with the best fit (red line) from Eq. (13.5)
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Fig. 13.16 Time dependence of the kinetic energy of the pinching mode of PtPOP (black open
circles) obtained from the vibrational analysis of the S1 �SCF-QM/MM BOMD simulations and
averaged over all trajectories. The red line is the best fit of the function in Eq. (13.6) to the time
dependence of the average pinching kinetic energy. Also shown (blue line) is the average transla-
tional kinetic energy of water molecules sampled by requiring that (i) at t = 0 they are within the
first peak of the Pt-Osolvent RDF (see Fig. 11.3) and (ii) at the end of the nonequilibrium propagation
they have not left this coordination shell. Finally, the dashed vertical lines represent the times when
the average Pt–Pt distance of the ensemble of non-stationary S1 PtPOP molecules is at the first two
outer turning points

fc(t) = Ae−t/τc cos

(
2π

TES
t

)

+ B (13.5)

in which TES is the coherent oscillation period. The vibrational cooling time τe
was computed by fitting the time-dependent kinetic energy of the pinching mode
obtained from the generalized normal mode analysis, and shown in Fig. 13.16, with
the following function:

fe(t) = Ce−t/τe cos2
(
2π

TES
t + π

2

)

+ D (13.6)

which reflects the dependence of the energy on the square of the relative veloci-
ties. The best fits gave values of τc = 520 ± 14 fs and τe = 320 ± 10 fs. The pure
dephasing time τd was estimated by making use of the approximations underlying
the optical Bloch equations [16]. In the optical Bloch picture, the rate of decoherence
is given, phenomenologically, by the sum of the rates of vibrational cooling and pure
dephasing:

1

τc
= 1

2τe
+ 1

τd
(13.7)

Using Eq. (13.7), a value of 2770 fs is found for τd . This means that the decoherence
of the Pt–Pt vibrations is essentially driven by energy dissipation along the Pt–Pt
coordinate, while statistical effects are far less important.

Experimentally, decoherence times of τc = 1.76 ± 0.8 ps and τc = 1.5 ± 0.5 ps
were found from transient absorption andtime-resolved fluorescence up-conversion
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measurements respectively [2]. Furthermore, vibrational cooling was found to hap-
pen on time scales of τe = 1.31 ± 0.04 ps (transient absorption) and τe = 1.5 ± 0.2
ps (fluorescence up-conversion), i.e. simultaneously to coherence decay. Thus, while
the coherence decay is around three times faster in our simulations, they agree qual-
itatively with the experiments in the observation that the origin of the decoherence is
mostly dynamical, i.e. a result of (dynamical) energy dissipation in the excited sys-
tem, and not statistical in nature. This behaviour is a consequence of the compactness
and rigidity of the scaffold of P-O-P ligands, the first providing screening of the Pt–
Pt oscillator from (stochastic) interactions with solvent molecules, and the second
offering a highly harmonic force constant for the pinching motion (the period of the
oscillations in the average Pt–Pt distance from the simulations changes by only ∼18
fs from the first to the last oscillation). As for the cause of the quantitative discrep-
ancy between the coherence decay and vibrational relaxation times found for PtPOP
from the present simulations with respect to the experimental values, we argue that
this is a consequence of the calculations slightly overestimating the anharmonicity
of the Pt–Pt motion. This is underpinned by the fact that the PMF computed from the
equilibrated part of the S1 �SCF-QM/MM trajectories, shown in Fig. 13.12, is best
fitted with a Morse potential, while in the transient absorption measurements per-
formed by van der Veen et al. [2] the period changes at most by∼1.5 fs in going from
a 360 to a 380nm excitation wavelength (as already mentioned, in our simulations
the period changes by ∼18 fs at the end of the coherent dynamics).

Themechanism of coherence decay in PtPOP is different fromwhat was proposed
[17] for the [Ir2(dimen)4]2+ complex, already mention in Sect. 11.2. The main factor
causing decoherence in [Ir2(dimen)4]2+ is, in fact, statistical, ascribable to the flexi-
bility of the dimen ligands that impart higher anharmonicity to the potential energy
surface and a broader width to the distribution of configurations of ground-state
molecules that can be excited [7, 17]. Even more insightful is, perhaps, a compar-
ison with the behaviour observed for I2 undergoing geminate recombination after
photoexcitation in different environments. When the reaction was followed in sol-
vents like CCl4 or cyclohexane, vibrational relaxation was found to occur without
coherent oscillations [18]. The behaviour of PtPOP is, instead, much more similar to
that of I2 in solid krypton, where stochastic collisions with solvent molecules leading
to dephasing in solution are absent and the system is allowed to dissipate energywhile
retaining the vibrational phase [16, 19]. In all cases, the rigidity of the environment
surrounding the oscillators is found to play an important role in determining whether
vibrational coherence survives during the energy relaxation process or not.

13.3.2 Paths of Vibrational Energy Relaxation

Having established that vibrational cooling drives the coherence decay of the ensem-
ble of Pt–Pt oscillators, the natural question that arises at this point is: what are the
paths of energy dissipation from the Pt–Pt coordinate?
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To provide an answer to this question, we have first investigated the hypothesis
advanced by van der Veen et al. [2] that the main channel of energy dissipation
involves transient orientationally specific interactions of the Pt atoms with water
molecules coordinated at the open axial site. To do so, we have calculated the average
translational and rotational energies of watermolecules selected from the first solvent
coordination shell around the Pt atoms defined by the first peak of the Pt-Osolvent RDF,
as indicated in Fig. 11.3. The average translational energy is plotted as a function of
time in Fig. 13.16 together with the average kinetic energy along the pinching mode.
The average rotational energy extracted from the trajectories did not display any
particular displacement from its equilibrium thermal value. Early in the dynamics, the
average translational energy of the coordinating water molecules experiences small
positive fluctuations from its thermal equilibrium value. These fluctuations happen at
around 250 and 450 fs, i.e. at the first and second outer turning points of the average
Pt–Pt distance. This uptake of energy by the solvent, however, represents only a small
fraction of the loss of energy from the pinching mode, and, certainly, cannot explain
the steady decrease happening already during the first Pt–Pt oscillation period. In
other words, the water molecules are more “spectators” of the Pt–Pt dynamics, rather
than active participants in the relaxation process.

This is further substantiated by the time evolution of the first peak of the Pt-
Osolvent RDF presented in Fig. 13.17. The oscillations that appear until around 500
fs mirror the Pt–Pt oscillations of the excited-state ensemble of PtPOP molecules,
thus implying that the solvent molecules are relatively static during this part of the
dynamics. After that, the Pt–Pt distribution has almost reached an equilibrium, and
the solvent molecules rearrange to the new solute configuration, as evident from the
inset of Fig. 13.17, which reports the time evolution of the Pt-Osolvent cumulative
coordination number at the first minimum of the RDF (dPtO = 3.85 Å). Since only

Fig. 13.17 Density plot of the time evolution of the first peak of the Pt-Osolvent RDF obtained
from the S1 �SCF-QM/MM trajectories of PtPOP in water during the first 3 ps of dynamics. The
inset shows the time dependence (black curve) of the cumulative Pt-Osolvent coordination number
at dPtO = 3.85 Å, representing the instantaneous average number of water molecules found within
the first solvent coordination shell of the Pt atoms, together with the value (red line) obtained from
the equilibrated part of the �SCF-QM/MM trajectories
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Fig. 13.18 (Top) Evolution of the ensemble average total vibrational kinetic energy of PtPOP
(black circles) obtained as sum of the kinetic energies of the individual generalized normal modes,
according to Eq. (6.36), from the vibrational analysis of the S1 �SCF-QM/MM trajectories. The
average ensemble total energy was further averaged over time intervals of 100 fs as indicated by
the horizontal black lines. The red line is an exponential fit to the data points, while the horizontal
dashed line represents the theoretical value of vibrational energy of an ensemble of molecules with
the number of DOF of PtPOP in the simulations in equilibrium at 300 K. (Bottom) Plots of the time
dependence of the kinetic energy along selected vibrational modes of PtPOP for three representative
�SCF-QM/MM trajectories in S1. The kinetic energies of modes a, b and c are vertically shifted
for clarity of presentation

water molecules coordinating to the Pt atoms at the free axial sites are eligible to
accept energy directly from the Pt–Pt pinching, the simulations seem to exclude
direct solute-solvent interactions as the main source of energy loss. Therefore, other
intramolecular vibrational modes have to mediate dissipation of the excess energy
along the Pt–Pt coordinate to the solvent owing to anharmonic couplings with the
pinching mode.

A second indication that this is indeed the case is given by Fig. 13.18 (Top), where
the total vibrational kinetic energy of PtPOP averaged over time intervals of 100 fs
is plotted. An exponential fit to the evolution of the total vibrational energy, also
shown in Fig. 13.18 (Top), gives a time constant of 600 ± 200 fs for the decay before
reaching equilibrium. Hence, the total vibrational energy is dissipated almost twice
as slow as the vibrational cooling along the Pt–Pt coordinate. This observation can
be understood as a clear sign of transfer of excess energy along the Pt–Pt coordinate
to intramolecular modes involving the ligands only if one assumes that the energy
initially accumulated in the ligand modes dissipates faster than the Pt–Pt vibrational
cooling time. Since the ligands are exposed to direct interactions with the solvent it
is reasonable to expect that the energy put into vibrational modes involving ligand
atoms in the excitation process dissipates very efficiently to the solvent. It follows
that the above result can be interpreted as an indication that the energy initially stored
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in the Pt–Pt coordinate survives in the PtPOP molecule for longer than the simulated
vibrational cooling time for the ensemble of Pt–Pt oscillators.

As a last, more stringent, test of this mechanistic hypothesis we have plotted in
Fig. 13.18 (Bottom) the evolution of the kinetic energy for the pinchingmode together
with three other relevant vibrational modes, as obtained from the generalized normal
mode analysis, along three representative trajectories. Themodes labelledmodeb and
mode c were found to have similar frequencies and large overlaps with respectively
the twist 1 and breathing modes obtained from the gas-phase trajectories, and shown
previously to be coupled to the pinchingmode.However, they cannot be characterized
fully as a twisting and a breathing mode, since they exhibit also character of other
types of vibrations, most significantly Pt-P stretching (a representation of the modes
in terms of displacement vectors is given in Fig. B.1 in AppendixB). Mode a does
not overlap significantly with any of the main modes coupled in vacuum with the
Pt–Pt pinch. It has mixed character of Pt-P stretching and ligand twist, with an
autocorrelation function of mode velocities (see Fig.B.1) centered around 120 fs.
This period is not far from the position of the peak (138 fs) in the IR spectrum
of PtPOP assigned to P–Pt–P stretching by Gellene and Roundhill [10]. Notably,
the evolution of the kinetic energies along these ligand deformation modes is seen
from Fig. 13.18 (Bottom) to be strongly anticorrelated with the evolution of the
kinetic energy of the pinching mode, since drops in the latter are always mirrored
by increments of the former and vice versa. P-O and P-OH groups in the molecule
experience large nuclearmotion along the three ligand vibrationalmodes. Since these
groups are likely involved in hydrogen bonding with the water molecules during the
dynamics, the modes are expected to efficiently funnel excess energy to the solvent.

Overall, the simulations carry clear signs that dissipation of the Pt–Pt energy to
the solvent, which drives the decoherence of the Pt–Pt oscillations, occurs mainly
indirectly through IVR to modes characterized by motion of the O-P-OH moieties.
The result seems to confirm the hypothesis recently put forward by Monni et al. [3],
mentioned in the introduction, that anharmonic couplings between internal modes
are the main source of decoherence of the Pt–Pt vibrations in photoexcited PtPOP.
Since vibrational cooling along the pinching mode is found from the simulations to
be much faster in solvent compared to vacuum, we can deduce that the role of the
solvent is actually to facilitate anharmonic couplings between the modes, making
IVR more efficient. Experimentally, van der Veen et al. [2] found a dependence
of vibrational cooling on the solvent, which was interpreted as a signature of direct
energy transfer from the Pt–Pt coordinate to the solvent. This interpretation, however,
neglects the fact that different solvents can affect the strength of the anharmonic
couplings between internal modes differently, thus changing the rates of IVR. Once
again, this is in contrast to what was found for [Ir2(dimen)4]2+ in acetonitrile, where
the solvent prolongs coherence of the metal-metal oscillations by making, in some
cases, IVR less likely than in vacuum [17].
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Part V
Concluding Remarks



Chapter 14
Summarizing Results and Outlook

The work presented herein focused on augmenting, benchmarking and applying a
novel multiscale modelling strategy for simulating the structural dynamics of com-
plex molecular systems in solution. The project has been prompted by the beginning
of a new era of X-ray science, namely the “femtosecond era”, in which modern
sources of intense and ultrashort pulsed X-ray radiation enable the direct observa-
tion of the dynamics of the chemical bond in real time.

Femtosecond X-ray scattering measurements are emerging as a powerful tool to
map photocatalytic processes in solution. Much of the attention is concentrated on
elucidating the details of the ultrafast excited-state dynamics of transitionmetal com-
plexes with photoconversion functionality. The interpretation and analysis of such
novel ultrafast experiments call for first-hand theoretical support. Moreover, several
experimental studies are starting to address the problem of improving efficiency and
versatility of photocatalytic complexes by modifying their structure or by changing
the solvent in which they are embedded [1–5]. Correctly linking the experimental
outcomes to photocatalytic reactivity and tunability requiresmechanistic knowledge,
which, again, can only be attained through modelling and theory.

Assistance to the ultrafast experiments can be offered by atomistic simulations
provided that they are both reliable and efficient. Detailed description of the solu-
tion dynamics of systems as large as transition metal complexes is far beyond the
reach of multireference electronic structure methods, due to insurmountable com-
putational requirements. On the other hand, entirely classical and empirical models
cannot describe at ab initio level processes like bond-formation dynamics, coherence
decay, energy transfer to the solvent. The route that we follow is based on the mul-
tiscale QM/MM coupling of a computationally expedient electronic structure code
like GPAW with classical potential functions representing the solvent. The strategy
allows for extensive sampling of solvent-influenced dynamics of a complex molec-
ular system, within a Born-Oppenheimer Molecular Dynamics (BOMD) simulation
framework.
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In the present work, we have expanded the capabilities of the original formulation
of the GPAW-basedQM/MMBOMDmethodology, enabling it to describe electronic
excited states with arbitrary spin multiplicity. In particular, we have chosen to try
a cheap single-determinant DFT approach as �SCF. In Chap.5 of this thesis we
have provided the prerequisite theoretical background on GPAW and �SCF, and
described the �SCF implementation. We have drawn upon already existing �SCF
implementations that use a Gaussian smearing of the orbital occupation numbers to
readily converge the electron density in a context of dynamically changing energy
levels, and adapted the strategy within GPAW. The implementation has been tested
on a diatomic molecule showing good reproducibility with respect to other, more
standard, �SCF implementations, and further shown how a full potential energy
surface can be reconstructed without convergence problems close to regions of states
crossing thanks to the robustness provided by the Gaussian smearing.

A second part of the present project has dealt with the PtPOP molecule. PtPOP
has received much attention in the last years as representative of a broader class
of transition metal complexes with photocatalytic functionality. For this reason, it
has been object of extensive ultrafast experimental studies. The model photocatalyst
represented the ideal candidate for assessing the potentialities and performances of
a combination of �SCF and QM/MM BOMD methodologies as applied to study
the structural properties and dynamics of transition metal complexes. The assess-
ment was in terms of both reproduction of previous experimental observations and
assistance to new ultrafast X-ray scattering experiments with unprecedented time
resolution carried out during this project.

In Chap.9, we have reported the first calculated potential energy surfaces (PESs)
of PtPOP along the Pt–Pt distance coordinate for both the lowest-lying singlet and
triplet excited states, which provide the first computational evidence that they have
approximately the same shape and position with respect to the ground-state gas-
phase equilibrium geometry. While in Chap.11, we have seen that the QM/MM
BOMD simulations predict structural and dynamical properties in solution, such as
the equilibrium Pt–Pt bond length, the excited-state structural changes and the Pt–Pt
period of vibration, that are in agreement with experimental values. We have further
elucidated the solvation shell structure in the ground and excited states, highlighting
the presence of solvent molecules strongly coordinating along the Pt–Pt axis. The
solvation cage is largely unaltered by excitation, a feature that, previously, had only
been postulated based on experimental evidence. Ensemble properties have been
robustly characterized using a large amount of statistics (around 460 ps for the ground
state andmore than 200 ps for the excited state), achieved thanks to the computational
expediency inherent in GPAW and �SCF. We note that similar QM/MM studies on
transition metal complexes [6–8] base their conclusions on statistical amounts of
thermally sampled data which are roughly an order of magnitude smaller than those
achieved in the present work.

We performed pump-probe X-ray diffuse scattering (XDS) experiments at an X-
ray free electron laser (XFEL) on PtPOP in aqueous solution, where we followed the
evolution of coherent Pt–Pt vibrations in the ground state. QM/MM BOMD simu-
lations have been determinant in guiding the data analysis by refining the structural
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model (Chap.11). Furthermore, they provided a semi-classical picture of the photoin-
duceddynamics of the full ensemble ofmolecules that is entirely useful in interpreting
the experimental outcome. The picture is based on the formation of a localized hole
in the ground-state distribution of Pt–Pt distances following laser excitation to the
ground state. The model predicts the optimal experimental conditions for preparing
a vibrationally “cold” excited-state population and a complementary narrow ground-
state hole displaced from equilibrium, to bring out the vibrational modulation of the
signal due to coherent ground-state dynamics. This was illustrated in Chap.12.

Next, in Chap.13, we took a step forward from the interpretation and validation
of the experiments, and tried to uncover mechanistic aspects of the excited-state
dynamics of PtPOP that had remained so far poorly understood, because they are not
accessible by experiments.We summarize themain conclusions that we have reached
about the ultrafast vibrational relaxation following photoexcitation of PtPOP to the
first singlet excited state (S1) in water:

• The Pt2P8 core of the molecule does not retain the D4h symmetry it has in the
ground state, as commonly believed, but distorts towards D2d symmetry, following
pseudorotation of the ligands. An aspect that had gone unnnoticed in previous DFT
studies, but which could play a decisive role in determining the trends observed
in the ISC rates of PtPOP and its derivatives in solution.

• Decoherence along the Pt–Pt coordinate occurs through vibrational cooling while
preserving to a large extent the vibrational phase.

• Channels of intramolecular vibrational energy redistribution (IVR) prevail over
direct transfer to the solvent in determining the flow of excess Pt–Pt vibrational
energy.

• The modes involved in the IVR have main character of ligand twisting and Pt–P
bond stretching, and vibrational periods close to the period of the Pt–Pt stretching
vibrations.

• The role of the solvent in the relaxation process is to strengthen anharmonic cou-
plings between the pinching and the ligand deformation modes, thus facilitating
IVR with respect to the scenario in vacuum.

Overall, cost-effective �SCF-QM/MM BOMD simulations appear, from the
present study, as a powerful tool to investigate aspects of the excited-state dynamics
and reactivity of complex molecular systems in solution. Therefore, they can be used
to assist the analysis of, and complement ultrafast experiments for cases in which
the BO approximation can be safely employed.

In this study, we have focused on the relaxation events taking place in S1 in the first
picoseconds after photoexcitation in water. Intersystem crossing to the lower lying
T1 state is known from transient absorption measurements to occur much later, after
around ∼14 ps [9]. This permitted us to use �SCF-QM/MM BOMD simulations
that neglect any non-adiabatic and spin-orbit couplings between electronic states. In
our simulations, the S1 state, where the investigated structural dynamics occurs, was
found to be relativelywell isolated fromT1 and other higher lying electronic states, as
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implied by the unperturbed shape of all obtained S1 potential curves. However, fluc-
tuations in the solvent configurations could temporarily shift the energy levels, thus
favouring other electronic states getting closer to S1. In order to asses the interplay
between these transient energy levels fluctuations and the structural distortion of the
symmetry of themolecule caused by pseudorotation of the ligands in determining the
rates of ISC in water solution, non-adiabatic dynamics simulations including spin-
orbit couplings (SOCs) and solvent effects are needed. Future computational studies
should point in this direction to expand on the knowledge about the excited-state
relaxation cascade at later times than those considered here.

In addition, the early events in the excited-state relaxation cascade in many pho-
tocatalytic transition metal complexes are dominated by couplings between elec-
tronic and nuclear motions. Electronic transitions can occur on picosecond or sub-
picosecond time scales, and can play an important role in determining the catalytic
properties of a complex. Therefore, many ultrafast experimental studies address the
problem of determining the time scales of non-adiabatic processes in photoexcited
transitionmetal complexes [10].Recently, the femtosecond time resolutionofferedby
XFELs was exploited to characterize coherent nuclear dynamics along with changes
in the electronic character in a prototypical iron complex [11].

Hence, the next natural step to take to improve on the range of applicability of
our code is to go beyond the BO approximation through inclusion of non-adiabatic
effects in the dynamics. As mentioned in the introduction, this can be done, without
losing the advantages offered by a classical description of the nuclear dynamics, using
mixed quantum-classical schemes like the trajectory surface hopping (TSH) method.
The development of surface hopping routines within ASE or the coupling of the
GPAW �SCF implementation presented in this thesis with already integrated TSH
programs, like SHARC[12, 13], represent possible projects for the future. The single-
determinant character of �SCF, combined with the use of smooth orbitals, should
guarantee efficient evaluation of the non-adiabatic coupling vectors, needed for the
surface hopping propagation, using convenient finite differencemethods [14, 15]. On
the other hand, the approximation of utilizing a single-determinant method as�SCF
to describe a problem that is inherentlymulticonfigurationalwill have to be rigorously
assessed. Tests of the quality of non-adiabatic couplings computedwith�SCF should
be performed on small molecules for which high-level multireference methods are
available, and on transition metal complexes against couplings calculated at TDDFT
level, which is the current method of choice in non-adiabaticMD simulations of such
systems.
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Appendix A
Codes

Below we include scripts and parts of larger codes that have been developed in
the course of the present project. The first entry contains the most important part
of the Gaussian smearing �SCF code implemented in GPAW, and currently avail-
able only within a development branch of the program on Gitlab (https://gitlab.com/
glevi/gpaw/tree/Dscf_gauss). We include it here, together with an example script for
a Gaussian smearing �SCF calculation in GPAW, in the hope that it can serve as
guidance in case someone intends to use the implementation, or wants to contribute
to further develop it. We also provide scripts for extracting body-fixed frame carte-
sian velocities from MD trajectories and for performing a generalized normal mode
analysis. We think these scripts might turn useful to students that are confronted
with similar problems, or be source of inspiration for development within simulation
packages like ASE.

Listing A.1 Python class developed in the GPAW module occupations.py for determining
Gaussian smeared �SCF constraints on the orbital occupation numbers during an SCF cycle of a
GPAWcalculation. This is themost important part of theGaussian smearing�SCF implementation.
The implementation is currently available within the following development branch of GPAW:
https://gitlab.com/glevi/gpaw/tree/Dscf_gauss. Projects to merge the implementation in the official
release of the program are ongoing.

c l a s s F i x e d O c c u p a t i o n s _ G a u s s ( Z e r o K e l v i n ) :
d e f _ _ i n i t _ _ ( s e l f , o c c u p a t i o n , c o n s t r a i n t s , w i d t h = 0 . 0 1 ) :

s e l f . o c c u p a t i o n = np . a r r a y ( o c c u p a t i o n )
s e l f . c o n s t r a i n t s = c o n s t r a i n t s
Z e r o K e l v i n . _ _ i n i t _ _ ( s e l f , T r u e )
s e l f . w i d t h = w i d t h / H a r t r e e
s e l f . n i t e r = −1

d e f s p i n _ p a i r e d ( s e l f , w f s ) :
r e t u r n s e l f . f i x e d _mome n t ( w f s )

d e f f i x e d _mome n t ( s e l f , w f s ) :
f o r k p t i n wf s . k p t _ u :

n e w _ o c c u p a t i o n = s e l f . d i s t r i b u t e _ g a u s s i a n ( kp t , s e l f .
o c c u p a t i o n [ k p t . s ] )

w f s . bd . d i s t r i b u t e ( n ew _ o c c u p a t i o n , k p t . f _ n )
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# F i x t h e m a g n e t i c moment f o r s p i n p o l a r i z e d c a l c u l a t i o n s
i f s e l f . o c c u p a t i o n . s h a p e [ 0 ] == 2 :

s e l f . magmom = s e l f . o c c u p a t i o n [ 0 ] . sum ( ) − s e l f . o c c u p a t i o n
[ 1 ] . sum ( )

i f s e l f . c o n s t r a i n t s [ 0 ] :
f o r o r b i n s e l f . c o n s t r a i n t s [ 0 ] :

s e l f . magmom += o r b [ 0 ]
i f s e l f . c o n s t r a i n t s [ 1 ] :

f o r o r b i n s e l f . c o n s t r a i n t s [ 1 ] :
s e l f . magmom −= o r b [ 0 ]

d e f d i s t r i b u t e _ g a u s s i a n ( s e l f , k p t , T h i s S p i n _ o c c u p a t i o n ) :

n e w _ o c c u p a t i o n = T h i s S p i n _ o c c u p a t i o n

i f s e l f . c o n s t r a i n t s [ k p t . s ] :
f o r c , o r b i n e n um e r a t e ( s e l f . c o n s t r a i n t s [ k p t . s ] ) :

dx2 = ( k p t . e p s _n −k p t . e p s _ n [ o r b [ 1 ] ] ) ∗∗2
f g a u s s = 1 / ( s e l f . w i d t h ∗ np . s q r t ( 2 ∗ np . p i ) ) ∗ np . exp (− dx2

/ ( 2 ∗ s e l f . w i d t h ∗∗ 2 ) )
i f o r b [ 0 ] < 0 :

f g a u s s [ s e l f . o c c u p a t i o n [ k p t . s ] = = 0 ] = 0
e l s e :

f g a u s s [ s e l f . o c c u p a t i o n [ k p t . s ] ! = 0 ] = 0
f g a u s s / = sum ( f g a u s s )
# N o rm a l i z e t h e g a u s s i a n d i s t r i b u t i o n s u c h t h a t
# t h e sum o f t h e sm e a r e d c o n s t r a i n t s i s
f g a u s s ∗= o r b [ 0 ]
# The c o n s t r a i n t s c a n be < o r > 0
# < 0 e l e c t r o n s a r e r emoved
# > 0 e l e c t r o n s a r e a d d e d
n e w _ o c c u p a t i o n = n e w _ o c c u p a t i o n + f g a u s s

r e t u r n n e w _ o c c u p a t i o n

d e f t o d i c t ( s e l f ) :
r e t u r n {}

Listing A.2 Example of input script for a calculation with the Gaussian smearing �SCF
implementation in GPAW. The script runs calculations to compute the energies of the first singlet
and triplet excited states of the CO molecule.

f r om _ _ f u t u r e _ _ i m p o r t p r i n t _ f u n c t i o n
f r om a s e . p a r a l l e l i m p o r t p a r o p e n
f r om a s e . s t r u c t u r e i m p o r t m o l e c u l e
f r om gpaw i m p o r t GPAW
f rom gpaw i m p o r t Mixe r , MixerSum , M i x e r D i f
f r om gpaw . o c c u p a t i o n s i m p o r t F i x e d O c c u p a t i o n s _ G a u s s a s FOG
im p o r t HPCPath a s p
f r om gpaw . e i g e n s o l v e r s i m p o r t CG
f r om gpaw . e i g e n s o l v e r s i m p o r t D a v i d s o n
i m p o r t o s
f r om a s e . i o i m p o r t r e a d , w r i t e

PATH = p . HPCPath ( ) . p a t h

# D e f i n e a name f o r t h e o u t p u t f i l e s
f n ame = ’ CO_ l c ao_0 . 1 8 _ tzpLDA_S2 ’
j o b i d = o s . e n v i r o n [ ’ PBS_JOBID ’ ]

# The e n e r g y o f t h e o p t i m i z e d g r o u n d s t a t e
E_gs = −14 . 687650
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CO = r e a d ( PATH+ ’ CO_ l c ao_0 . 1 8 _ t zpLDA_op tSO . xyz ’ )

# S e t c e l l t o c e l l o f GS o p t i m i z a t i o n
CO . s e t _ c e l l ( [ 1 2 , 1 2 , 1 3 . 1 5 0 3 4 ] )

# E x c i t e d s t a t e c a l c u l a t i o n − T r i p l e t
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
o c c u p a t i o n s = [ [ 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 ] , [ 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 ] ]
c a l c _ e s T = GPAW( mode= ’ l c a o ’ , b a s i s = ’ t z p ’ , n b a n d s =8 , h = 0 . 1 8 , xc = ’LDA ’ ,

s p i n p o l = True ,
o c c u p a t i o n s =FOG ( o c c u p a t i o n s , [ [ [ − 1 , 2 ] ] , [ [ 1 , 5 ] ] ] , w i d t h

= 0 . 0 1 ) ,
m a x i t e r _ s m e a r =80 , m a x i t e r = 1000 ,
c o n v e r g e n c e ={ ’ e n e r g y ’ : 0 . 0 0 0 5 ,

’ d e n s i t y ’ : 1 . 0 e −4 ,
’ e i g e n s t a t e s ’ : 4 . 0 e −8 ,
’ b a n d s ’ : −1} , t x t =PATH+ fname + ’ _T 2 f r omS0 o p t .

o u t ’ )

CO . s e t _ c a l c u l a t o r ( c a l c _ e s T )
E_esT = CO . g e t _ p o t e n t i a l _ e n e r g y ( )
d=CO . g e t _ d i s t a n c e ( 0 , 1 )

# E x c i t e d s t a t e c a l c u l a t i o n − S i n g l e t s p i n p o l a r i z e d
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
c a l c _ e s S _ s p = GPAW( mode= ’ l c a o ’ , b a s i s = ’ t z p ’ , n b a n d s =8 , h = 0 . 1 8 , xc = ’

LDA ’ , s p i n p o l = True ,
o c c u p a t i o n s =FOG ( o c c u p a t i o n s , [ [ [ − 1 , 2 ] , [ 1 , 5 ] ] , [ ] ] , w i d t h

= 0 . 0 1 ) ,
m a x i t e r _ s m e a r =80 , m a x i t e r = 1000 ,
c o n v e r g e n c e ={ ’ e n e r g y ’ : 0 . 0 0 0 5 ,

’ d e n s i t y ’ : 1 . 0 e −4 ,
’ e i g e n s t a t e s ’ : 4 . 0 e −8 ,
’ b a n d s ’ : −1} , t x t =PATH+ fname + ’

_ S 1 f r omS 0 o p t _ s p . o u t ’ )

CO . s e t _ c a l c u l a t o r ( c a l c _ e s S _ s p )
E _ e s S s p = CO . g e t _ p o t e n t i a l _ e n e r g y ( )

# E x c i t e d s t a t e c a l c u l a t i o n − S i n g l e t s p i n p a i r e d
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
o c c u p a t i o n s = [ [ 2 , 2 , 2 , 2 , 2 , 0 , 0 , 0 ] ]
c a l c _ e s S _ n s = GPAW( mode= ’ l c a o ’ , b a s i s = ’ t z p ’ , n b a n d s =8 , h = 0 . 1 8 , xc = ’

LDA ’ , s p i n p o l = F a l s e ,
o c c u p a t i o n s =FOG ( o c c u p a t i o n s , [ [ [ − 1 , 2 ] , [ 1 , 5 ] ] ] , w i d t h

= 0 . 0 1 ) ,
m a x i t e r _ s m e a r =80 , m a x i t e r = 1000 ,
c o n v e r g e n c e ={ ’ e n e r g y ’ : 0 . 0 0 0 5 ,

’ d e n s i t y ’ : 1 . 0 e −4 ,
’ e i g e n s t a t e s ’ : 4 . 0 e −8 ,
’ b a n d s ’ : −1} , t x t =PATH+ fname + ’

_ S 1 f r omS 0 o p t _ n s . o u t ’ )

CO . s e t _ c a l c u l a t o r ( c a l c _ e s S _ n s )
E _ e s S n s = CO . g e t _ p o t e n t i a l _ e n e r g y ( )

f d = p a r o p e n ( PATH+ fname + ’ . t x t ’ , ’w ’ )
p r i n t ( f d . name+ ’ ’ + j o b i d , f i l e = f d )
p r i n t ( f i l e = f d )
p r i n t ( ’ B a s i s s e t : t z p ’ , f i l e = f d )
p r i n t ( ’ Goeme t r y ( Ang ) T P o t e n t i a l e n e r g y ( eV ) ’ , f i l e = f d )
p r i n t ( ’ %.3 f %.6 f ’ % ( d , E_esT ) , f i l e = f d )
p r i n t ( ’ E x c i t a t i o n e n e r g y 5 s i gma −>2 p i T : %.2 f ’ %(E_esT−E_gs ) , f i l e =

f d )
p r i n t ( f i l e = f d )
p r i n t ( ’ Goeme t r y ( Ang ) S s p P o t e n t i a l e n e r g y ( eV ) ’ , f i l e = f d )
p r i n t ( ’ %.3 f %.6 f ’ % ( d , E _ e s S s p ) , f i l e = f d )
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p r i n t ( ’ E x c i t a t i o n e n e r g y 5 s i gma −>2 p i S : %.2 f ’ %(2∗ E_e sS sp −E_esT−
E_gs ) , f i l e = f d )

p r i n t ( f i l e = f d )
p r i n t ( ’ Goeme t r y ( Ang ) S n s P o t e n t i a l e n e r g y ( eV ) ’ , f i l e = f d )
p r i n t ( ’ %.3 f %.6 f ’ % ( d , E _ e s S n s ) , f i l e = f d )
p r i n t ( ’ E x c i t a t i o n e n e r g y 5 s i gma −>2 p i S : %.2 f ’ %( E_e sSn s −E_gs ) , f i l e

= f d )

Listing A.3 Matlab script for performing a generalized normal mode analysis of anMD trajectory.
It takes as input a .dcd file with cartesian velocities.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% C a l c u l a t e g e n e r a l i z e d Norma l Modes f r om c o v a r i a n c e o f mas s
% w e i g h t e d c a r t e s i a n v e l o c i t i e s .
%
% F o l l o w s S t r a c h a n , A . JCP 120 ( 2 0 0 4 )
%
% G . L e v i 2017
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% De f i n e v a r i a b l e s

kb = 8 . 6 1 7 3 3 0 3 3 7 2 1 7 2 1 3 e −05 ; % eV /K
t s t e p = 1 ; % f s
v2eV = 1 e10 ∗ s q r t ( 1 . 6 0 2 1 7 6 6 2 0 8 e − 1 9 / 1 . 6 6 0 5 3 9 0 4 0 e −27) ; % 1 e10 ∗ s q r t ( eV2J ∗

Na )
mas s = [ 1 9 5 . 0 8 4 , 1 9 5 . 0 8 4 , 3 0 . 9 7 4 , 3 0 . 9 7 4 , 3 0 . 9 7 4 , . . .

3 0 . 9 7 4 , 3 0 . 9 7 4 , 3 0 . 9 7 4 , 3 0 . 9 7 4 , 3 0 . 9 7 4 , . . .
1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , . . .
1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , . . .
1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , . . .
1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , 1 5 . 9 9 9 , . . .
1 . 0 0 8 , 1 . 0 0 8 , 1 . 0 0 8 , 1 . 0 0 8 , 1 . 0 0 8 , . . .
1 . 0 0 8 , 1 . 0 0 8 , 1 . 0 0 8 ] ;

syms = { ’ P t ’ , ’ P t ’ , ’ P ’ , ’ P ’ , ’ P ’ , ’ P ’ , ’ P ’ , ’ P ’ , ’ P ’ , ’ P ’ , . . .
’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , . . .
’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , ’O ’ , . . .
’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ , ’H ’ } ;

mas s = r e pm a t ( mass , 3 , 1 ) ;
mas s = r e s h a p e ( mass , 1 , 3∗ s i z e ( mass , 2 ) ) ;

%% Read i n c a r t e s i a n v e l o c i t i e s

p a t h = ’ P a t h \ t o \ t r a j e c t o r y \ f i l e \ ’ ;
f l n am e = ’ T r a j e c t o r y F i l e N a m e ’ ; % . dcd f i l e w i t h v e l o c i t i e s

d i s p ( [ ’ R e a d i n g v e l o c i t i e s . . . ’ ] )

% Read i n v e l o c i t i e s
h = r e a d _ d c d h e a d e r ( [ p a t h f l n am e ] ) ; % Ang / p s
n a t om s = h . N ;
nmo l s = 1 ;
n s t e p s = h . NSET ;
s t a r t s t e p = 0 ; % F i r s t s t e p 0
s t e p = 1 ;
l a s t s t e p = n s t e p s −1;
n s t e p s _ s e l = c e i l ( ( l a s t s t e p +1− s t a r t s t e p ) / s t e p ) ;
t = 0 : t s t e p : ( n s t e p s _ s e l −1) ∗ t s t e p ;
v e l s = r e a d d c d ( [ p a t h f l n am e ’ _v . d cd ’ ] , s t a r t s t e p , s t e p , l a s t s t e p , 1 :

n a t om s ) ;
v e l s = v e l s / ( v2eV ∗1 e −12) ;

%% Make c o v a r i a n c e m a t r i x o f mas s w e i g h t e d v e l o c i t i e s

% Mass w e i g t h e d v e l o c i t i e s
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mve l s = r e pm a t ( mas s . ^ ( 0 . 5 ) , n s t e p s _ s e l , 1 ) . ∗ v e l s ;

d i s p ( [ ’ Mak ing c o v a r i a n c e m a t r i x f r om mass w e i g h t e d v e l o c i t i e s . . . ’ ] )

% C o v a r i a n c e m a t r i x
K = z e r o s ( 3 ∗ na t oms , 3∗ n a t om s ) ;
f o r a a = 1 : 3 ∗ n a t om s

K( aa , a a : e nd ) = 0 . 5 ∗ mean ( mv e l s ( : , a a : e nd ) . ∗ r e pm a t ( mv e l s ( : , a a ) ,
1 , 3∗ na t oms −( aa −1) ) , 1 ) ;

K ( a a : end , a a ) = K( aa , a a : 3 ∗ n a t om s ) ;
e nd

ek i nm = t r a c e (K ) ; % Av e r a g e k i n e t i c e n e r g y ( eV )

%% D i a g o n a l i z e c o v a r i a n c e m a t r i x o f mas s w e i g h t e d v e l o c i t i e s

d i s p ( [ ’ F i n d i n g n o rm a l modes . . . ’ ] )

% Now d i a g o n a l i z e c o v a r i a n c e m a t r i x
[ L , em ] = e i g (K ) ;
L t = L ’ ;

%% Ge t NMs v e l o c i t i e s

mVels = z e r o s ( n s t e p s _ s e l , 3∗ n a t om s ) ;
f o r t t = 1 : n s t e p s _ s e l

mVels ( t t , : ) = L t ∗ mve l s ( t t , : ) ’ ;
e nd

% C a l c u l a t e NMs k i n e t i c e n e r g i e s
e k i n = 0 . 5 ∗ mVels . ^ 2 ;

%% NMs t o t a l e n e r g i e s

t _ w b i n = 3 0 0 ; % f s
t _ e d g e s = 0 : t _ w b i n : ( n s t e p s −1) ∗ 2 ;
[N , e d g e s , b i n s ] = h i s t c o u n t s ( t , t _ e d g e s ) ;
t _ b i n n e d = z e r o s ( 1 , l e n g t h (N ) ) ;
f o r i i = 1 : l e n g t h (N )

t _ b i n n e d ( i i ) = ( t _ e d g e s ( i i + 1 ) + t _ e d g e s ( i i ) ) / 2 ;
e nd
e t o t = z e r o s ( l e n g t h (N ) , 3∗ n a t om s ) ;

% C a l c u l a t e t o t a l e n e r g y
f o r nn = 1 : 3 ∗ n a t om s

f o r i i = 1 : l e n g t h (N )
e t o t ( i i , nn ) = 2 ∗ mean ( e k i n ( b i n s == i i , nn ) ) ;

e nd
end

%% Mode f r e q u e n c i e s f r om FT o f a u t o c o r r e l a t i o n mode v e l o c i t i e s

f o r nm =1 : 3 ∗ n a t om s
d i s p ( [ ’ G e t t i n g a u t o c o r r e l a t i o n f u n c t i o n mode ’ n um 2 s t r ( nm ) ] )

% Ge t a u t o c o r r e l a t i o n f u n c t i o n
acV = z e r o s ( n s t e p s _ s e l , 1 ) ;
f o r t t = 1 : n s t e p s _ s e l

acV ( t t ) = mVels ( 1 , 114−nm+1 ) ∗mVels ( t t , 114−nm+1 ) ;
e nd

% F o u r i e r T r a n s f o rm
t h i s _ p a d = 2^ n e x t p ow2 ( l e n g t h ( t ) ) ;
[ T , S f t _ s p e c ] = d f t _ 0 1 ( t , acV , t h i s _ p a d ) ;
[M, idxM ] = max ( S f t _ s p e c ) ;
f i g = f i g u r e ( 1 0 0 0 )
c l f
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p l o t ( T , S f t _ s p e c , ’ k ’ , ’ l i n e w i d t h ’ , 2 )
x l im ( [ 0 6 0 0 ] )
x l a b e l ( ’ P e r i o d ( f s ) ’ , ’ i n t e r p r e t e r ’ , ’ t e x ’ , ’ f o n t s i z e ’ , 2 6 ) ;
y l a b e l ( ’ a . u . ’ , ’ i n t e r p r e t e r ’ , ’ t e x ’ , ’ f o n t s i z e ’ , 2 6 ) ;
t h i s a x = g c a ;
t e x t x = t h i s a x . XLim ( 2 ) − ( t h i s a x . XLim ( 2 )− t h i s a x . XLim ( 1 ) ) ∗ 1 / 3 ;
t e x t y = t h i s a x . YLim ( 2 ) − ( t h i s a x . YLim ( 2 )− t h i s a x . YLim ( 1 ) ) ∗ 1 / 3 ;
t e x t ( t e x t x , t e x t y , { [ ’T = ’ n um2 s t r ( T ( idxM ) , ’ %.1 f ’ ) ’ f s ’ ] } , ’

i n t e r p r e t e r ’ , ’ t e x ’ , ’ f o n t w e i g h t ’ , ’ b o l d ’ , ’ f o n t s i z e ’ , 2 2 )
s e t ( g c f , ’ P o s i t i o n ’ , [ 0 0 600 5 0 0 ] )
s e t ( gca , ’ f o n t s i z e ’ , 2 2 , ’ f o n t w e i g h t ’ , ’ b o l d ’ , ’ L i n eW i d t h ’ , 1 . 5 ) ;
t i t l e ( [ ’Mode ’ n um 2 s t r ( nm ) ] , ’ i n t e r p r e t e r ’ , ’ t e x ’ , ’ f o n t s i z e ’ ,

2 2 , ’ f o n t w e i g h t ’ , ’ b o l d ’ )
g r i d o f f
box on

p a u s e
p r i n t ( f i g , [ p a t h ’Mode ’ n um 2 s t r ( nm ) ’ . png ’ ] , ’−dpng ’ )

end

%% Make a v e r a g e s t r u c t u r e

% Read i n c a r t e s i a n p o s i t i o n s

d i s p ( [ ’ R e a d i n g p o s i t i o n s . . . ’ ] )

% Read i n p o s i t i o n s
h = r e a d _ d c d h e a d e r ( [ p a t h f l n am e ’ _ s o l u . d cd ’ ] ) ; % Ang
n a t om s = h . N ;
nmo l s = 1 ;
n s t e p s = h . NSET ;
s t a r t s t e p = 0 ; % F i r s t s t e p 0
s t e p = 1 ;
l a s t s t e p = n s t e p s −1;
n s t e p s _ s e l = c e i l ( ( l a s t s t e p +1− s t a r t s t e p ) / s t e p ) ;
p o s = r e a d d c d ( [ p a t h f l n am e ’ _ s o l u . d cd ’ ] , s t a r t s t e p , s t e p , l a s t s t e p ,

1 : n a t om s ) ;

posm = mean ( pos , 1 ) ;
po smxyz = z e r o s ( n a t oms , 4 ) ;
f o r a a = 1 : n a t om s

posmxyz ( aa , 2 : e nd ) = posm ( 3 ∗ ( aa −1) + 1 : 3 ∗ ( aa −1) +1+2 ) ;
e nd

% W r i t e p o s i t i o n s t o f i l e
f i d = f o p e n ( [ p a t h f l n am e ’ _mean . xyz ’ ] , ’ wt ’ ) ;
f o r m a t S p e c = ’%s \ t %.6 f \ t %.6 f \ t %.6 f \ t \ n ’ ;
f p r i n t f ( f i d , ’%d \ n ’ , 3 8 ) ;
f p r i n t f ( f i d , ’ \ n ’ ) ;
f o r a a = 1 : n a t om s

f p r i n t f ( f i d , f o rm a t S p e c , syms { a a } , posmxyz ( aa , 2 ) , po smxyz ( aa , 3 )
, po smxyz ( aa , 4 ) ) ;

e nd
f c l o s e ( f i d ) ;

%% Wr i t e NMD f i l e f o r No rma l Mode Wi z a r d

f i d = f o p e n ( [ p a t h f l n am e ’ _NMs . nmd ’ ] , ’ wt ’ ) ;

% T i t l e
f p r i n t f ( f i d , [ f l n am e ’ \ n ’ ] ) ;

% Atom names
f o r m a t S p e c = ’%s ’ ;
f p r i n t f ( f i d , [ ’ names ’ ] ) ;
f o r a a = 1 : n a t om s

f p r i n t f ( f i d , f o rm a t S p e c , [ syms { a a } ’ ’ ] ) ;
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end
f p r i n t f ( f i d , [ ’ \ n ’ ] ) ;

% R e s i d u e names
f o r m a t S p e c = ’%s ’ ;
f p r i n t f ( f i d , [ ’ r e s n am e s ’ ] ) ;
f o r a a = 1 : n a t om s

f p r i n t f ( f i d , f o rm a t S p e c , [ syms { a a } ’ ’ ] ) ;
e nd
f p r i n t f ( f i d , [ ’ \ n ’ ] ) ;

% C o o r d i n a t e s
f o r m a t S p e c = ’ %.6 f %.6 f %.6 f ’ ;
f p r i n t f ( f i d , [ ’ c o o r d i n a t e s ’ ] ) ;
f o r a a = 1 : n a t om s

f p r i n t f ( f i d , f o rm a t S p e c , posmxyz ( aa , 2 ) , po smxyz ( aa , 3 ) , po smxyz (
aa , 4 ) ) ;

e nd
f p r i n t f ( f i d , [ ’ \ n ’ ] ) ;

% NMs
f o r nn = 1 : 3 ∗ n a t om s

f p r i n t f ( f i d , [ ’ mode ’ n um 2 s t r ( nn ) ’ ’ ] ) ;
f p r i n t f ( f i d , ’ %.6 f ’ , L t (114 − nn +1 , : ) ) ;
f p r i n t f ( f i d , [ ’ \ n ’ ] ) ;

e nd

f c l o s e ( f i d ) ;

Listing A.4 Python script for extracting body-fixed frame velocities from ASE trajectory files.

# ! / u s r / b i n / e nv p y t h o n

i m p o r t numpy a s np
i m p o r t o s
i m p o r t HPCPath a s p

i m p o r t rmsd

f r om s y s i m p o r t a r g v
f r om a s e . i o i m p o r t r e a d , w r i t e , T r a j e c t o r y

" " "
S e p a r e t e s t r a n s l a t i o n , r o t a t i o n and v i b r a t i o n s a s s um i n g
t h e r e a r e no c o u p l i n g s .
R o t a t e s v e l o c i t y v e c t o r s a c c o r d i n g t o o p t i m a l s u p e r p o s i t i o n
w i t h r e s p e c t t o a r e f e r e n c e s t r u c t u r e .

1 ) T r a n s l a t e s f r a m e s s u c h t h a t COM c o i n c i d e s w i t h COM
r e f e r e n c e s t r u c t u r e

2 ) G e n e r a t e r o t a t i o n m a t r i x R t o s u p e r i m p o s e f r a m e s t o
r e f e r e n c e u s i n g Kab s ch me t hod

(W. Kabsch , A c t a C r y s t . A 32 , ( 1 9 7 6 ) )

3 ) R o t a t e s p o s i t i o n s and v e l o c i t i e s u s i n g R

G . L e v i 2017
" " "

d e f g e t _ a n g l e ( r1 , r2 , a t om ) :
v1 = r 1 [ a tom , : ]
v2 = r 2 [ a tom , : ]
v1n = v1 / np . l i n a l g . norm ( v1 )
v2n = v2 / np . l i n a l g . norm ( v2 )
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a n g l e = np . a r c c o s ( np . v d o t ( v1n , v2n ) )

r e t u r n np . d e g r e e s ( a n g l e )

d e f g e t _ v c om ( v , m a s s e s ) :
M = ma s s e s . sum ( )
vcom = np . d o t ( m a s s e s . f l a t t e n ( ) , v ) / M

r e t u r n vcom

d e f g e t _ e t r a n s ( vcom , m a s s e s ) :
M = ma s s e s . sum ( )
e t r a n s = 0 . 5 ∗M∗ np . l i n a l g . norm ( vcom ) ∗∗2 # eV

r e t u r n e t r a n s

d e f g e t _ a n g _ v e l o c i t y ( a t om s ) :
" " "

S e t s t h e t o t a l a n g u l a r momentum t o z e r o
by c o u n t e r a c t i n g r i g i d r o t a t i o n s .

" " "
# F i n d t h e p r i n c i p a l moment s o f i n e r t i a

# and p r i n c i p a l a x e s b a s i s v e c t o r s
Ip , b a s i s = a t om s . g e t _ m o m e n t s _ o f _ i n e r t i a ( v e c t o r s = T r u e )
# C a l c u l a t e t h e t o t a l a n g u l a r momentum

# and t r a n s f o r m t o p r i n c i p a l b a s i s
Lp = np . d o t ( b a s i s , a t om s . g e t _ a n g u l a r _mome n t um ( ) )
# C a l c u l a t e t h e r o t a t i o n v e l o c i t y v e c t o r

# i n t h e p r i n c i p a l b a s i s , a v o i d i n g z e r o d i v i s i o n
# and t r a n s f o r m i t b a c k t o t h e c a r t e s i a n c o o r d i n a t e s y s t em

# An g u l a r v e l o c i t y i n p r i n c i p a l a x i s :
omegap = np . s e l e c t ( [ I p > 0 ] , [ Lp / I p ] )
omega = np . d o t ( np . l i n a l g . i n v ( b a s i s ) , omegap )
# Compute r o t a t i o n a l e n e r g y
e r o t = 0 . 5 ∗ np . d o t ( omegap , Lp )
# We s u b t r a c t a r i g i d r o t a t i o n

# c o r r e s p o n d i n g t o t h i s r o t a t i o n v e c t o r
p o s i t i o n s = a t om s . g e t _ p o s i t i o n s ( )
v a ng = np . c r o s s ( omega , p o s i t i o n s )

r e t u r n vang , e r o t

d e f g e t _ r o t a t i o n ( P , Q ) :
" " "

Kab s ch me t hod t o o b t a i n a r o t a t i o n m a t r i x
t h a t m i n i m i z e s t h e msd b e tw e e n an i s t a n t a n e o u s
s t r u c t u r e and a s t a t i c r e f e r e n c e s t r u c t u r e .

" " "

# C a l c u l a t e c o v a r i a n c e m a t r i x
cov = np . d o t ( np . t r a n s p o s e ( P ) , Q )

# SVD
V , S , W = np . l i n a l g . s v d ( cov )
d = ( np . l i n a l g . d e t (V ) ∗ np . l i n a l g . d e t (W) ) < 0 . 0
i f d :

S [ −1] = −S [ −1]
V [ : , −1] = −V [ : , −1]

# G e n e r a t e r o t a t i o n m a t r i x
R = np . d o t (V , W)

r e t u r n R
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d e f m u l t i x y z w r i t e ( r e f , r , t r a j s , na , comr , syms , nameou t , w r i t e r e f =
F a l s e ) :

r e f . s e t _ p o s i t i o n s ( r )
i f w r i t e r e f :

# W r i t e p o s i t i o n s r e f e r e n c e
f l r e f = op en ( p a t h o u t + ’ R e f e r e n c e . xyz ’ , ’w ’ )
f l r e f . w r i t e ( ’%d \ n ’ % na )
f l r e f . w r i t e ( ’ \ n ’ )
f o r j i n r a n g e ( na ) :

f l r e f . w r i t e ( ’%3s %14 .6 f %14 .6 f %14 .6 f \ n ’ % ( syms [ j ] , r [ j , 0 ] , r
[ j , 1 ] , r [ j , 2 ] ) )

f l r e f . c l o s e ( )
# W r i t e t r a j e c t o r y r e f e r e n c e
t r a j r e f = T r a j e c t o r y ( p a t h o u t + ’ R e f e r e n c e . t r a j ’ , ’w ’ , r e f )
t r a j r e f . w r i t e ( )
t r a j r e f . c l o s e ( )

# Move c e n t r o i d t o o r i g i n
# Needed by t h e Kab s ch me t hod
c r e f = r . mean ( a x i s = 0 )
r o = r − c r e f

# C r e a t e t r a j e c t o r y o b j e c t f o r d y n am i c f r a m e s
t r a j r = T r a j e c t o r y ( p a t h o u t + n ameou t + ’ _ s o l u . t r a j ’ , ’w ’ )

c t = 0
f o r t t , t h i s t r a j i n e n um e r a t e ( t r a j s ) :

p r i n t ’ P r o c e s s i n g t r a j e c t o r y ’ + t h i s t r a j
t r a j = T r a j e c t o r y ( t h i s t r a j )
t l = l e n ( t r a j )

# W r i t e h e a d e r
i f t t == 0 :

f l r = op en ( p a t h o u t + n ameou t + ’ _ s o l u . xyz ’ , ’w ’ )
f l r . w r i t e ( ’%d \ n ’ % na )
f l r . w r i t e ( ’ T r a j e c t o r y ’ + n ameou t + ’ S t e p 0 \ n ’ )
f l r n o a = open ( p a t h o u t + n ameou t + ’ _ s o l u N o a l i g n . xyz ’ , ’w ’ )
f l r n o a . w r i t e ( ’%d \ n ’ % na )
f l r n o a . w r i t e ( ’ T r a j e c t o r y ’ + n ameou t + ’ S t e p 0 \ n ’ )

f l v = open ( p a t h o u t + n ameou t + ’ _ v s o l u . xyz ’ , ’w ’ )
f l v . w r i t e ( ’%d \ n ’ % na )
f l v . w r i t e ( ’ T r a j e c t o r y ’ + n ameou t + ’ S t e p 0 \ n ’ )
f l v n o r = open ( p a t h o u t + n ameou t + ’ _ v s o l u N o r o t . xy z ’ , ’w ’ )
f l v n o r . w r i t e ( ’%d \ n ’ % na )
f l v n o r . w r i t e ( ’ T r a j e c t o r y ’ + n ameou t + ’ S t e p 0 \ n ’ )

f l e = open ( p a t h o u t + n ameou t + ’ _ e s o l u . d a t ’ , ’w ’ )
f l e . w r i t e ( ’%3s%14 s%14 s%14 s \ n ’ % ( ’ t ’ , ’ e t r a n s ’ , ’ e r o t ’ , ’

e k i n ’ ) )

f o r i i i n r a n g e ( t l ) :
s = t r a j [ i i ] [ : na ]
s . s e t _ c o n s t r a i n t ( )
f r = s . g e t _ p o s i t i o n s ( )
f v = s . g e t _ v e l o c i t i e s ( )
m a s s e s = s . g e t _ m a s s e s ( ) [ : , np . n ew a x i s ]
comf = s . g e t _ c e n t e r _ o f _ m a s s ( )

# ## P o s i t i o n s
# T r a n s l a t e o r i g i n t o COM r e f e r e n c e
t v e c = comf − comr
f r −= t v e c
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# W r i t e o u t p o s i t i o n s b e f o r e a l i g n m e n t
i f c t i s n o t 0 :

f l r n o a . w r i t e ( ’%d \ n ’ % na )
f l r n o a . w r i t e ( ’ S t e p : %d \ n ’ %( c t ) )

f o r j i n r a n g e ( na ) :
f l r n o a . w r i t e ( ’%3s %14 .6 f %14 .6 f %14 .6 f \ n ’ % (

syms [ j ] , f r [ j , 0 ] , f r [ j , 1 ] , f r [ j , 2 ] ) )

# Move c e n t r o i d s t o o r i g i n
# Needed by t h e Kab s ch me t hod
c r = f r . mean ( a x i s = 0 )
f r −= c r

# R o t a t e t o m i n im i z e rmd t o r e f e r e n c e
R = rmsd . k a b s c h ( f r , r o )
f r r o t = np . d o t ( f r , R )

# Move c e n t r o i d s b a c k
f r r o t += c r

# # Fo r an o r t h o g o n a l ( r i g i d ) t r a n s f o r m a t i o n d e t ( R ) =0
d e tR = np . l i n a l g . d e t ( R )

# # Check RMSD
f r r m s d = rmsd . rmsd ( f r r o t , r )

p r i n t ( ’ S t e p : ’ + s t r ( c t ) + ’ , d e t ( R ) : ’ + s t r ( d e tR ) +
’ , RMSD : ’ + s t r ( f r r m s d ) )

# W r i t e o u t p o s i t i o n s
i f c t i s n o t 0 :

f l r . w r i t e ( ’%d \ n ’ % na )
f l r . w r i t e ( ’ S t e p : %d \ n ’ %( c t ) )

f o r j i n r a n g e ( na ) :
f l r . w r i t e ( ’%3s %14 .6 f %14 .6 f %14 .6 f \ n ’ % ( syms [ j

] , f r r o t [ j , 0 ] , f r r o t [ j , 1 ] , f r r o t [ j , 2 ] ) )

# ## V e l o c i t i e s
# Remove COM v e l o c i t y
vcom = g e t _ v c om ( fv , m a s s e s )
f v −= vcom
e t r a n s = g e t _ e t r a n s ( vcom , m a s s e s )

# S e t p o s t i o n s and v e l o c i t i e s w i t h r e s p e c t t o COM
# b e f o r e c a l c u l a t i n g a n g u l a r v e l o c i t y

s . s e t _ p o s i t i o n s ( s . g e t _ p o s i t i o n s ( ) − comf )
s . s e t _mome n t a ( f v ∗ ma s s e s )

# Remove a n g u l a r v e l o c i t y
vang , e r o t = g e t _ a n g _ v e l o c i t y ( s )
f v −= vang
e k i n = 0 . 5 ∗ np . v d o t ( f v ∗ mas s e s , f v )

# W r i t e o u t v e l o c i t i e s b e f o r e r o t a t i o n
i f c t i s n o t 0 :

f l v n o r . w r i t e ( ’%d \ n ’ % na )
f l v n o r . w r i t e ( ’ S t e p : %d \ n ’ %( c t ) )

f o r j i n r a n g e ( na ) :
f l v n o r . w r i t e ( ’%3s %14 .6 f %14 .6 f %14 .6 f \ n ’ % (

syms [ j ] , f v [ j , 0 ] , f v [ j , 1 ] , f v [ j , 2 ] ) )

# R o t a t e t o r e f e r e n c e
f v = np . d o t ( fv , R )

# W r i t e o u t v e l o c i t i e s
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i f c t i s n o t 0 :
f l v . w r i t e ( ’%d \ n ’ % na )
f l v . w r i t e ( ’ S t e p : %d \ n ’ %( c t ) )

f o r j i n r a n g e ( na ) :
f l v . w r i t e ( ’%3s %14 .6 f %14 .6 f %14 .6 f \ n ’ % ( syms [ j

] , f v [ j , 0 ] , f v [ j , 1 ] , f v [ j , 2 ] ) )

# W r i t e t o t r a j e c t o r y
s . s e t _ p o s i t i o n s ( f r r o t )
s . s e t _ v e l o c i t i e s ( f v )
t r a j r . w r i t e ( s )

# W r i t e o u t e n e r g i e s
f l e . w r i t e ( ’%3d%14 .6 f %14 .6 f %14 .6 f \ n ’ % ( c t ∗2 , e t r a n s ,

e r o t , e k i n ) )

c t = c t + 1

f l r . c l o s e ( )
f l r n o a . c l o s e ( )
f l v . c l o s e ( )
f l v n o r . c l o s e ( )
f l e . c l o s e ( )
t r a j r . c l o s e ( )

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

# ## D e f i n e v a r i a b l e s
na = 38 # Number o f a t om s i n s o l u t e
p a t h o u t = p . HPCPath ( ) . p a t h + ’NMs / ’

# ## Ge t i n p u t s
d e l a r g v [ 0 ]

# Read i n r e f e r e n c e s t r u c t u r e
# R e f e r e n c e i s f i r s t f r am e o f t r a j e c t o r y i n f i r s t a r g um e n t
t r a j r e f = T r a j e c t o r y ( a r g v [ 0 ] )
r e f = t r a j r e f [ 0 ] [ : na ]
r e f . s e t _ c o n s t r a i n t ( )
r = r e f . g e t _ p o s i t i o n s ( )
syms = r e f . g e t _ c h e m i c a l _ s y m b o l s ( )
comr = r e f . g e t _ c e n t e r _ o f _ m a s s ( )

# Read i n t r a j e c t o r i e s t o p r o c e s s
t r a j s = [ ]
f o r f i l e n a m e i n a r g v [ 1 : ] :

i f ’ . t r a j ’ i n f i l e n a m e :
t r a j s . a p p e n d ( f i l e n a m e )

# Read name f o r o u t p u t f i l e i f g i v e n
i f ( ’ . t r a j ’ n o t i n a r g v [ −1 ] ) :

n ameou t = a r g v [ −1]
e l s e :

n ameou t = t r a j s [ 0 ] [ 0 : − 5 ]

m u l t i x y z w r i t e ( r e f , r , t r a j s , na , comr , syms , nameou t , w r i t e r e f = F a l s e )



Appendix B
Further Details on the Vibrational
Analysis in Solution

FigureB.1 shows the main generalized normal modes involved in the vibrational
relaxation of PtPOP in water, as obtained from the vibrational analysis of the S1
solution-phase trajectories of the second set of �SCF-QM/MM BOMD simulations
performed in the present work. The pinching mode has almost exclusive character
of Pt-Pt stretching and a period of ∼236 fs. Thus, it is very similar to the pinching
mode extracted from the vacuum �SCF-QM BOMD simulations (compare with
Fig. 13.5). The mode indicated as mode a has prevalent character of asymmetric
Pt-P stretching, with an FT of mode velocities peaking at ∼120 fs. Mode b and
mode c have large overlaps with, respectively, the twist 1 and breathing modes
obtained from the generalized normal mode analysis of the vacuum trajectories.
Their characteristic periods are also very close to those of the vacuum twist 1 and
breathing modes (compare with Fig. 13.5). Notably, mode b and mode c present
significant contributions from Pt-P stretchings in addition to characters of twisting
and breathing.
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Fig. B.1 The pinching mode and the modes that were found to be more coupled to it from the
generalized normal mode analysis of the �SCF-QM/MM BOMD simulations of PtPOP in water.
The modes are represented through generalized normal mode displacement vectors. For each of
them the FT of the autocorrelation function of mode velocities is also shown
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